104 resultados para Winter, Christian FriedrichWinter, Christian FriedrichChristian FriedrichWinter
em Publishing Network for Geoscientific
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
This study characterises the shape of the flow separation zone (FSZ) and wake region over large asymmetric bedforms under tidal flow conditions. High resolution bathymetry, flow velocity and turbulence data were measured along two parallel transects in a tidal channel covered with bedforms. The field data are used to verify the applicability of a numerical model for a systematic study using the Delft3D modelling system and test the model sensitivity to roughness length. Three experiments are then conducted to investigate how the FSZ size and wake extent vary depending on tidally-varying flow conditions, water levels and bathymetry. During the ebb, a large FSZ occurs over the steep lee side of each bedform. During the flood, no flow separation develops over the bedforms having a flat crest; however, a small FSZ is observed over the steepest part of the crest of some bedforms, where the slope is locally up to 15°. Over a given bedform morphology and constant water levels, no FSZ occurs for velocity magnitudes smaller than 0.1 m s**-1; as the flow accelerates, the FSZ reaches a stable size for velocity magnitudes greater than 0.4 m s**-1. The shape of the FSZ is not influenced by changes in water levels. On the other hand, variations in bed morphology, as recorded from the high-resolution bathymetry collected during the tidal cycle, influence the size and position of the FSZ: a FSZ develops only when the maximum lee side slope over a horizontal distance of 5 m is greater than 10°. The height and length of the wake region are related to the length of the FSZ. The total roughness along the transect lines is an order of magnitude larger during the ebb than during the flood due to flow direction in relation to bedform asymmetry: during the ebb, roughness is created by the large bedforms because a FSZ and wake develops over the steep lee side. The results add to the understanding of hydrodynamics of natural bedforms in a tidal environment and may be used to better parameterise small-scale processes in large-scale studies.
Resumo:
In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1-3 kPa in the top layer, 20-140 kPa in the underlying sediment; thickness of the top layer ca. 5-8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 +-2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.
Resumo:
This dataset consists of average water depth, average current velocity and direction and roughness lengths calculated from the spatially-averaged velocity profiles collected with an ADCP along a transect in the Jade Bay in 2008.
Resumo:
The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear velocities from log-linear segments sought on transect-averaged and single-location velocity profiles. During the ebb tide a permanent flow separation zone was established over the steep (10-20°) lee sides of the ebb-oriented primary bedforms, which generated a consequent drag on the flow. During the flood, no flow separation was induced by the gentle (2°) lee side of the primary bedforms except over the steepest (10°) part of the lee side where a small separation zone was sometimes observed. As a result, hydraulic roughness was only due to the superimposed bedforms. The parameterized flow separation line was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone and bedform geometry (asymmetry, relative height or slope of the lee side) is unclear. This would improve the prediction of complex bedform roughness in tidal flows.
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.