48 resultados para Wind-induced Natural Ventilation

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern eastern equatorial Pacific (EEP) is a major natural source for atmospheric carbon dioxide and is thought to be connected to high-latitude ocean dynamics by oceanic teleconnections on glacial-interglacial timescales. A wealth of sedimentary records aiming at reconstructing last Quaternary changes in primary productivity and nutrient utilization have been devoted to understanding those linkages between the EEP and other distant oceanic areas. Most of these records are, however, clustered in the pelagic EEP cold tongue, with comparatively little attention devoted to coastal areas. Here we present downcore measurements of the composition and concentration of the diatom assemblage together with opal (biogenic silica) concentration at site MD02-2529 recovered in the coastal Panama Basin. Piston core MD02-2529, collected in an area affected by a multitude of processes, provides evidence for strong variations in diatom production at the millennial timescale during the last glacial cycle. The maxima in total diatom concentration occurred during the early marine isotopic stage (MIS) 4 as well as during the MIS 4/3 transition and MIS 3. Rapid changes in diatom concentrations during the MIS 3 mimics Bond cycles as independently recorded by the SSS estimation derived from planktonic foraminifera from the same core. Such patterns indicate a clear linkage between diatom production in the coastal EEP and rapid climate changes in the high-latitude North Atlantic. In parallel, the long-term succession of the diatom community from coastal diatoms, predominantly thriving during MIS 5 and 4, towards pelagic diatoms, dominant during MIS 3 and 2, points to a long-term change in the surface hydrology. During Heinrich Events, diatoms strongly reduced their production, probably due to enhanced stratification in the upper water column. After the last glacial maximum, diatom production and valve preservation strongly decreased in response to the advection of nutrient (H2SiO4)-depleted, warmer water masses. Our high-resolution record highlights how regional climatic processes can modulate rapid changes in siliceous primary production as triggered by wind-induced local upwelling, indicating that millennial climatic variability can overtake other prominent hydrological processes such as those related to silicic acid leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During spring, ammonium oxidation and nitrite oxidation rates were measured in the NW basin of the Mediterranean Sea, from mesotrophic sites (Ligurian Sea and Gulf of Lions) to oligotrophic sites (Balearic Islands). Nitrification rates (average values for 37 measurements) ranged from 72 to 144 nmol of N oxidised/l/d, except in the Rhône River plume area where the rates increased to 264-504 nmol/l/d because of the riverine inputs of nitrogen. Maximal rates were located around the peak of nitrite within the nitracline at about 40 to 60 m and just above the phosphacline. At 1 station, relatively high values of nitrification (50 to 130 nmol/l/d) were also measured deep in the water column (240 m). Day-to-day variations were measured demonstrating the response within a few hours to hydrological stress (wind-induced mixing of the water column) and showing the role of hydrological characteristics on the distribution of nitrification rates. Because of the homogenous temperature (13°C) in the Mediterranean Sea, the spatial (geographical and vertical) fluctuations of nitrifying rates were linked to the presence of substrate due to mineralisation processes and/or Rhône River inputs. We estimate the contribution of nitrate produced by nitrification to the N demand of phytoplankton to range from 16% at mesotrophic to 61% at oligotrophic stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that in 2002-2005 mass development of coccolithofore Emiliania huxleyi on the Gelendzhik shelf (northeast Black Sea) occurred annually and in May-June its abundance reached 1500000 cells/l. In 2004-2005 bloom of E. huxleyi was accompanied by mass development of diatom alga Chaetoceros subtilis var. abnormis f. simplex (600000-900000 cells/l). For the first time it was registered as a dominating form of Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in phytoplankton throughout the entire period of the studies. Meanwhile in the early summer period the bulk of biomass consisted of coccolithophores (50-60%), while in the late summer period diatomaceous algae dominated (50-70%). Among ecological factors that favor coccolithophore development one may note microstratification of the upper mixed layer at a high illumination level and high temperature in surface waters (18-21°C). Terrigenous runoff during the rainy period had a negative effect on E. huxleyi development, while storms dispersed the population over the upper mixed layer. A wind-induced near-shore upwelling stimulated development of diatoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate conditions in the westernmost Mediterranean (Alboran Sea basin) over the last two millennia have been reconstructed through integration of molecular proxies applied for the first time in this region at such high resolution. Two temperature proxies, one based on isoprenoid membrane lipids of marine Thaumarchaeota (TEXH86-tetraether index of compounds consisting of 86 carbons) and the other on alkenones produced by haptophytes (UK'37 ratio) were applied to reconstruct sea surface temperature (SST). Both records reveal a progressive long term decline in SST over the last two millennia and an increased rate of warming during the second half of the twentieth century. This is in accord with previous temperature reconstructions for the Northern Hemisphere. TEXH86 temperature values are higher than those inferred from UK'37, probably due to differences in the bloom season of haptophytes and Thaumarchaeota, and reflect summer SST. The branched vs. isoprenoid tetraether index (BIT index) suggests a low contribution of soil organic matter (OM) to the sedimentary OM. The stable carbon isotopic composition of long chain n-alkanes indicates a predominant C3 plant contribution, with no major change in vegetation over the last 2000 yr. The distribution of long chain 1,14-diols (most likely sourced by Proboscia species in this setting) provided insight into variation in upwelling conditions during the last 2000 yr and depicts a correlation with the North Atlantic Oscillation (NAO) index, providing evidence of enhanced wind induced upwelling during periods of a persistent positive mode of the NAO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The earliest Oligocene (~33.5 Ma) is marked by a major step in the long-term transition from an ice-free to glaciated world. The transition, characterized by both cooling and ice-sheet growth, triggered a transient but extreme glacial period designated Oi-1. High-resolution isotope records suggest that Oi-1 lasted for roughly 400,000 yr (the duration of magnetochron 13N) before partially abating, and that it was accompanied by an ocean-wide carbon isotope anomaly of 0.75?. One hypothesis relates the carbon isotope anomaly to enhanced export production brought about by climate-induced intensification of wind stress and upwelling, particularly in the Southern Ocean. To understand how this climatic event affected export production in the Southern Ocean, biogenic silica (opal) and carbonate accumulation rates were computed for the sub-polar Indian Ocean using deep-sea cores from ODP Site 744, Kerguelen Plateau. Our findings suggest that net productivity in this region increased by several fold in response to the Oi-1 glaciation. In addition, calcareous primary producers dominant in the Late Eocene were partially replaced by opaline organisms suggesting a trend toward seasonally greater surface divergence and upwelling in this sector of the Southern Ocean. We attribute these changes to intensification of atmospheric=oceanic circulation brought about by high-latitude cooling and the appearance of a full-scale continental ice-sheet on East Antarctica. Higher terrigenous sediment accumulation rates support the idea that wind-induced changes in regional productivity were augmented by an increased supply of glacial dust and debris that provided limiting micro-nutrients (e.g., iron-rich dust particles). We speculate that the rapid changes in biogenic sediment accumulation in the Southern Ocean and other upwelling-dominated regions contributed to the ocean-wide positive carbon isotope anomaly by temporarily increasing the burial rate of organic carbon relative to carbonate carbon. The changes in burial rates, in turn, may have produced a positive feedback on climate by briefly drawing down atmospheric pCO2 .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last 20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST difference of ~2°C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929 record occurred between 13 and 10 ka B.P. Interglacial SST is ~24°C, indicating influence of upwelling. The onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water advection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind- induced exposure is one of the major forces shaping the geomorphology and biota in coastal areas. The effect of wave exposure on littoral biota is well known in marine environments (Ekebon et al., 2003; Burrows et al., 2008). In the Cabrera Archipelago National Park wave exposure has demostrated to have an effect on the spatial distribution of different stages of E.marginatus (Alvarez et al., 2010). Standarized average wave exposures during 2008 along the Cabrera Archipelago National park coast line were calculated to be applied in studies of littoral species distribution within the archipelago. Average wave exposure (or apparent wave power) was calculated for points located 50 m equidistant on the coastline following the EXA methodology (EXposure estimates for fragmented Archipelagos) (Ekebon et al., 2003). The average wave exposures were standardized from 1 to 100 (minimum and maximum in the area), showing coastal areas with different levels of mea wave exposure during the year. Input wind data (direction and intensity) from 2008 was registered at the Cabrera mooring located north of Cabrera Archipelago. Data were provided by IMEDEA (CSIC-UIB, TMMOS http://www.imedea.uib-csic.es/tmoos/boyas/). This cartography has been developed under the framework of the project EPIMHAR, funded by the National Park's Network (Spanish Ministry of Environment, Maritime and Rural Affairs, reference: 012/2007 ). Part of this work has been developed under the research programs funded by "Fons de Garantia Agrària i Pesquera de les Illes Balears (FOGAIBA)".