9 resultados para Wildfires

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seawater 87Sr/86Sr values increase abruptly by 28 * 10**-6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH c. 1) which is a proposed by-product of a bolide impact (Prinn and Fegley, 1987, doi:10.1016/0012-821X(87)90046-X).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked "14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (~11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone et al., 2007, doi:10.1073/pnas.0706977104].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wildfires are part of the Mediterranean ecosystem, however, in Israel all wildfires are human caused, either intentionally or un-intentionally. In this study we aimed to develop and test a new method for mapping fire scars from MODIS imagery, to examine the temporal and spatial patterns of wildfires in Israel in the 2000s and to examine the factors controlling Israel's wildfire regime. To map the fires we used two 'off-the-shelf' MODIS fire products as our basis-the 1 km MODIS Collection 5 fire hotspots, the 500 m MCD45A1 burnt areas-and we created a new set of fire scar maps from the 250 m MOD13Q1 product. We carried out a cross comparison of the three MODIS based wildfire scar maps and evaluated them independently against the wild fire scars mapped from 30 m Landsat TM imagery. To examine the factors controlling wildfires we used GIS layers of rainfall, land use, and a Landsat-based national vegetation map. Wildfires occurred in areas where annual rainfall was above 250 mm, mostly in areas with herbaceous vegetation. Wildfire frequency was especially high in the Golan Heights and in the foothills of the Judean mountains, and a high correspondence was found between military training zones and the spatial distribution of fire scars. The use of MODIS satellite images enabled us to map wildfires at a national scale due to the high temporal resolution of the sensor. Our MOD13Q1 based mapping of fire scars adequately mapped large (>1 km**2) fires with accuracies above 80%. Such large fires account for a large proportion of all fires, and pose the greatest threats. This database can aid managers in determining wildfire risks in space and in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Conifer populations appear disproportionately threatened by global change. Most examples are, however, drawn from the northern hemisphere and long-term rates of population decline are not well documented as historical data are often lacking. We use a large and long-term (1931-2013) repeat photography dataset together with environmental data and fire records to account for the decline of the critically endangered Widdringtonia cedarbergensis. Eighty-seven historical and repeat photo-pairs were analysed to establish 20th century changes in W. cedarbergensis demography. A generalized linear mixed-effects model was fitted to determine the relative importance of environmental factors and fire-return interval on mortality for the species. Results: From an initial total of 1313 live trees in historical photographs, 74% had died and only 44 (3.4%) had recruited in the repeat photographs, leaving 387 live individuals. Juveniles (mature adults) had decreased (increased) from 27% (73%) to 8% (92%) over the intervening period. Our model demonstrates that mortality is related to greater fire frequency, higher temperatures, lower elevations, less rocky habitats and aspect (i.e. east-facing slopes had the least mortality). Conclusions: Our results show that W. cedarbergensis populations have declined significantly over the recorded period, with a pronounced decline in the last 30 years. Individuals that established in open habitats at lower, hotter elevations and experienced a greater fire frequency appear to be more vulnerable to mortality than individuals growing within protected, rocky environments at higher, cooler locations with less frequent fires. Climate models predict increasing temperatures for our study area (and likely increases in wildfires). If these predictions are realised, further declines in the species can be expected. Urgent management interventions, including seedling out-planting in fire-protected high elevation sites, reducing fire frequency in higher elevation populations, and assisted migration, should be considered.