974 resultados para Whole-sediment TIE
em Publishing Network for Geoscientific
Resumo:
Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.
Resumo:
Neogene sediments from three areas of the Northern Indian Ocean (Indus Fan, Owen Ridge, Oman Margin, ODP Leg 117) were studied in order to determine the amount, type, and preservation of organic matter as functions of the environments encountered. The work consisted of geochemical analyses on whole sediment (Total Organic Content and Rock Eval pyrolysis) and of petrographic studies on isolated organic matter by optical and scanning electron microscopy. In Indus Fan sediments, organic matter is present in low amounts, mainly as lignaceous fragments. A contrasting situation exists in Oman Margin sediments which are generally rich in amorphous autochtonous organic matter. Owen Ridge, located between Indus fan and Oman Margin areas, shows two phases of organic sedimentation as a consequence of the uplift of the ridge. The older phase (Oligocene to early or middle Miocene) is strongly influenced by detrital supply from the Indus, while the younger phase (middle Miocene to Pleistocene) is characterized by relatively high amounts of autochtonous organic matter. From a general point of view it appears that high amounts of organic matter are mainly due to good preservation of marine amorphous organic matter, such as in Oman Margin sediments and in upper pelagic levels of Indus Fan and Owen Ridge deposits. Low total organic carbon contents are correlated with low proportions of amorphous material in the total organic matter due to oxidizing conditions. This leads to a relative enrichment in components derived from resistant materials (lignin, chitin, or other resistant biopolymers) such as lignaceous fragments (Indus Fan) and/or fragments from benthic organisms and alveolate microplankton (Oman Margin).
Resumo:
The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.
Resumo:
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC * GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products
Resumo:
Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.
Resumo:
The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.