11 resultados para White Coat Ceremony Inaugural Class Program

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution patterns of water temperature, salinity, current velocities, suspended matter concentration, bottom contour, and zooplankton abundance were studied in relation to marine-riverine interactions and tide/ebb phases for coast lines of different configurations in the White Sea during cruises of R/V Ekolog (August of 2006 and 2007). Significant difference in manifestation of combined effect of marine and riverine impacts (estuarine concave relief) and only marine impact (open-sea straight line portion) was observed. This results in both variations in sea water level and distribut patterns of suspended matter and zooplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty-seven white mica clasts were separated from five samples taken from near the bases of turbidites ranging in age from early Albian to middle Eocene. Twenty two (39%) of the micas have ages between 260 and 340 Ma and five (9%) have older ages (~400-600 Ma). The former age range is characteristic of the North American Alleghenian orogeny and the Iberian Variscan orogeny. The latter range is characteristic of the North American Acadian orogeny and older basement rocks in the Grand Banks and Newfoundland areas. Both age ranges are present in the middle Eocene sample, but only the younger range occurs in the middle Albian sample. This difference could be a sampling artifact. If this is not the case, then the most likely explanation is that the Acadian-aged micas within the Meguma Zone underlying the Grand Banks were totally reset by Alleghenian reactivation of the zone, a feature which occurs extensively in Nova Scotia. The addition of Acadian-aged micas in the middle Eocene sample may reflect a change in sediment provenance as drainage systems unrelated to rift topography developed. With the exception of one clast dated at 186 Ma, the 12 other micas obtained from the upper Paleocene sample yielded ages between 55 and 74 Ma, with 7 falling within ±2 m.y. of the 57-Ma age of the sample indicated by the biostratigraphic age-depth plot for Site 1276. This, together with the volcaniclastic content of the sample, indicates an input from near-contemporaneous volcanism. The nearest known occurrences of near-contemporaneous late Paleocene volcanism that could have produced white micas are in Greenland and Portugal, some 2000 and 1500 km distant, respectively, from Site 1276 during the Paleocene. However, ages of volcanism in these areas indicate that they could probably not be sources of micas younger than 60 m.y., which suggests some as-yet unknown volcanic source in the North Atlantic area. Accumulation in the Grand Banks area of airborne-transported volcaniclastic material from eruptions of slightly different ages, followed by a single resedimentation event, could account for the spread of dates obtained from the sample. White micas from the lowermost Albian sample show a spread of ages between 37 and 284 Ma that is completely different from the age distribution pattern of the middle Albian and middle Eocene samples. The sample location is between, and at least 25 m above and below, two igneous sills dated at 98 and 105 Ma. The sills have narrow thermal aureoles and ages older than the youngest detrital micas in the sample. It is unlikely, therefore, that the spread of mica ages in the sample is due to partial resetting of ages caused by thermal effects associated with the intrusion of the sills. The resetting may have been associated with a longer lived thermal event.