121 resultados para Wedge and strip anode

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol'khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the epsilon(t)Nd of rocks of the Khaidaiskii Series in the Ol'khon area has positive values, and the data points of these rocks plot near the mantle succession line in the epsilon(t)Nd-87Sr/86Sr diagram, whereas the epsilon(t)Nd values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the epsilon(t)Nd -87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol'khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol'khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol'khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol'khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shape and morphology of the northern Barbados Ridge complex is largely controlled by the sediment yield and failure behavior in response to high lateral loads imposed by convergence. Loads in excess of sediment yield strength result in nonrecoverable deformations within the wedge, and failure strength acts as an upper limit beyond which stresses are released through thrust faults. Relatively high loading rates lead to delayed consolidation and in-situ pore pressures greater than hydrostatic. The sediment yield and failure behavior is described for any stress path by a generalized constitutive model. A yield locus delineates the onset of plastic (non-recoverable) deformation, as defined from the isotropic and anisotropic consolidation responses of high-quality 38-mm triaxial specimens; a failure envelope was obtained by shearing the same specimens in both triaxial compression and extension. The yield locus is shown to be rotated into extension space and is centered about a K-line greater than unity, suggesting that the in-situ major principal stress has rotated into the horizontal plane, and that the sediment wedge is being subjected to extensional effective stress paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Pleistocene, five Pliocene, and thirteen late and middle Miocene calcareous nannofossil datums have been identified in the Leg 170 cored sequences collected from a transect across the Middle America Trench off the Nicoya Peninsula. Although some nannofossil zones could not be delineated, particularly in the Pliocene and upper Miocene, there appears to be a complete or very nearly complete Pleistocene through lower Miocene section at Sites 1039 and 1040. The oldest assemblages, observed at Site 1039 and 1040, are latest early Miocene in age (nannofossil Zone NN4). These assemblages are associated with gabbro intrusions into the basal sediments (one contact metamorphic hornfels sample contains relict nannofossils), indicating an age for the intrusion event of between 15.6 and 18.2 Ma at both Sites 1039 and 1040. Reference Site 1039, located on the Cocos plate, provides the best-preserved sequence of sediments of late Pleistocene to latest early Miocene age. The sediments cored in the prism sections at Sites 1040, 1041, 1042, and 1043 all indicate that the age of nannofossil assemblages in the prism sediments, including the toe, wedge, and apron, are all Pleistocene with a considerable amount of upper Miocene reworking. A period of low sediment accumulation rates (~5.3 m/m.y.) is recorded for Pliocene and upper Miocene sediments at Sites 1039, 1040, and 1043. Pliocene calcareous nannofossil assemblages characteristic of the ~2.5- to 3.75-m.y. time interval (nannofossil Zones NN16 and equivalent nannofossil Subzones CN12b and CN12a) were not resolved at any site. Nannofossil Zones NN15, NN14, NN13, and NN12 (early late Pliocene to early Pliocene) could not be resolved at any site either because of the absence of marker species. Within the Miocene at Sites 1039 and 1040, nannofossil Zones NN10-NN6 were difficult to differentiate because of the absence of several species that define the zonal boundaries. These intervals, where the nannofossil zones have not been resolved or are partially resolved, are primarily composed of carbonate ooze deposited during an ~8.5-m.y. (2.5-11 Ma) low sediment accumulation rate time interval. The absence of many of the marker species is attributed to warmer water conditions during those periods. Many of the same marker species are absent in the sediments recovered from nearby Deep Sea Drilling Project Site 155 in the Panama Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore fluid chlorinity lower than seawater is often observed in accretionary wedges and one of the possible causes of pore water freshening is the smectite to illite reaction. This reaction occurs during diagenesis in the 80-150°C temperature range. Low chlorinity anomalies observed at the toe of accretionary wedges have thus been interpreted as evidence for lateral fluid migration from inner parts of the wedge and the seismogenic zone. However, temperature conditions in Nankai Trough are locally high enough for the smectite to illite transition to occur in situ. Cation exchange capacity is here used as a proxy for smectite content in the sediment and the amount of interlayer water released during the smectite to illite reaction represents in average 12 water molecules per cation charge. Water and chloride budget calculations show that there is enough smectite to explain the chlorinity anomalies by in situ reactions. The shape of the pore fluid chlorinity profiles can be explained if compaction is also taken into account in the model. Lateral flow is not needed. This argument, based solely on chloride concentration, does not imply that lateral flow is absent. However, previous estimations of lateral fluid fluxes, and of the duration of transient flow events along the de.collement, should be reconsidered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The delta11B of 18 authigenic precipitates analysed ranges from 13.9 per mil to as high as 39.8 per mil, extending the upper range of previously reported carbonate delta11B values considerably. When related to the delta11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with delta13C and delta18O, delta11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth's history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore fluid and sediment Li concentrations and isotopic ratios provide important insights on the hydrology, sediment contribution to the arc volcanoes and fluid-sediment reactions at the dominantly non-accretionary Costa Rica subduction zone. Ocean Drilling Program Site 1039 in the trench axis provides a reference section of 400 m of the incoming sediments, and Site 1040, situated arcward from the trench, consists of a deformed sedimentary wedge and apron sediments, the décollement, and the partially dewatered underthrust sediment section. At the reference site, pore fluids show important isotopic variations (delta6Li=-21.7 to -37.8 per mil), reflecting the interplay of in situ alteration of volcanic material and ion exchange with clay minerals. In the basal section, a reversal of Li concentration and delta6Li toward seawater values is observed, providing supporting evidence for a lateral seawater flow system in the upper oceanic basement underlying this sediment section. At Site 1040, pore fluid of the lower deformed wedge sediments and within the décollement is enriched in Li and the isotopic compositions are relatively light, suggesting infiltration of a deep-seated fluid. The delta6Li value of -22 per mil of this Li-enriched fluid (261 µM), when compared with the delta6Li value of the subducted sediment section (-11 per mil), suggests that the deep source fluid originates from mineral fluid dehydration and transformation reactions at temperatures of 100 to 150°C, consistent with the temperature range of the up-dip seismogenic zone and of transformation of smectite to illite. The distribution of Li and its isotopes in the underthrust section are similar to those at the reference site, indicating near complete subduction of the incoming sediments and that early dewatering of the underthrust sediments occurs predominantly by lateral flow into the ocean. The hemipelagic clay-rich sediment section of the subducting plate carries most of the Li into this subduction zone, and the pelagic diatomaceous and nannofossil calcareous oozes contain little Li. The Li isotopes of both the clay-rich hemipelagic sediments and of the pelagic oozes are, however, similar, with delta6Li values of -9 to -12 per mil. The observations that (1) the delta6Li values of the underthrust sediments are distinctly lower than that of the mantle, and (2) the lavas of the Costa Rican volcanoes are enriched in Li and 7Li, provide an approximation of the contribution of the subducted sediments to the arc volcanoes. A first order mass balance calculation suggests that approximately half of the Li flux delivered by subducted sediments and altered oceanic crust into the Middle American Trench is recycled to the Costa Rican arc and at most a quarter of sedimentary Li is returned into the ocean through thrust faults, primarily the décollement thrust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous large igneous provinces formed in the Pacific Ocean during Early Cretaceous time, but their origins and relations are poorly understood. We present new geochronological and geochemical data on rocks from the Manihiki Plateau and compare these results to those for other Cretaceous Pacific plateaus. A dredged Manihiki basalt gives an 40Ar-39Ar age of 117.9+/-3.5 Ma (2 sigma), essentially contemporaneous with the Ontong Java Plateau ~2500 km to the west, and the possibly related Hikurangi Plateau ~3000 km to the south. Drilled Manihiki lavas are tholeiitic with incompatible trace element abundances similar to those of Ontong Java basalts. These lavas may result from high degrees of partial melting during the main eruptive phase of plateau formation. There are two categories of dredged lavas from the Danger Islands Troughs, which bisect the plateau. The first is alkalic lavas having strong enrichments in light rare earth and large-ion lithophile elements; these lavas may represent late-stage activity, as one sample yields an 40Ar-39Ar age of 99.5+/-0.7 Ma. The second category consists of tholeiitic basalts with U-shaped incompatible element patterns and unusually low abundances of several elements; these basalts record a mantle component not previously observed in Manihiki, Ontong Java, or Hikurangi lavas. Their trace element characteristics may result from extensive melting of depleted mantle wedge material mixed with small amounts of volcaniclastic sediment. We are unaware of comparable basalts elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forty-three core sections from Sites 434, 435, 438, 439, and 440 on the landward side and six core sections from Site 436 on the seaward side of the Japan Trench were obtained through the JOIDES Organic Geochemistry Advisory Panel for study of the origin and state of genesis of the organic matter associated with these continental slope, accretionary wedge, and outer trench slope sediments of the Japan Trench. The lipid fraction of these sediments is derived primarily from terrigenous organic matter and thus is allochthonous to the area. The associated kerogen fraction is of mixed allochthonous and autochthonous origin. The total organic carbon content seaward of the trench is less than that on the landward side. The composition of this organic matter is similar but not identical to that found in the landward side sediments. The organic matter within these sediments is in a diagenetic state in which geopolymerization of biogenic organic matter is nearly complete, but microbial alteration is still occurring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 125 recovered serpentined harzburgites and dunites from a total of jive sites on the crests and flanks of two serpen finite seamounts, Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. These are some of the first extant forearc peridotites reported in the literature and they provide a window into oceanic, supra-subduction zone (SSZ) mantle processes. Harzbutrgites from both seamounts are very refractory with low modal clinopyroxene (<4%), chrome-rich spinels (cx-number = 0.40-0.80), very low incompatible element contents, and (with the exception of amphibole-bearing samples) U-shaped rare earth element (REE) profiles with positive Eu anomalies. Both sets of peridotites have olivine-spinel equilibration temperatures that are low compared with abyssal peridotites, possibly because of water-assisted diffusional equilibration in the SSZ environment However, other features indicate that the harzburgites from the two seamounts have very different origins. Harzburgites from Conical Seamount are characterized by calculated oxygen fugacities between FMQ (fayalite- magnetite- quartz) - 1.1 (log units) and FMQ + 0.4 which overlap those of mid-ocean ridge basalt (MORB) peridotites. Dunites from Conical Seamotmt contain small amounts of clinopyroxene, orthopyroxene and amphibole and are light REE (LREE) enriched. Moreover; they are considerably more oxidized than the harzburgites to which they are spatially related, with calculated oxygen fugacities of FMQ -0.2 toFMQ + 1.2. Using textural and geochemical evidence, we interpret these harzburgites as residual MORB mantle (from 15 to 20 % fractional melting) which has subsequently been modified by interaction with boninitic melt ivithin the mantle wedge, and these dunites as zones of focusing of this melt in which pyroxene has preferentially been dissolved from the harzbutgite protolith. In contrast, harzburgites from Torishima Forearc Seamount give calculated oxygen fugacities between FMQ + 0.8 and FMQ + l.6, similar to those calculated for other subduction-zone related peridotites and similar to those calculated for the dunites (FMQ + 1.2 to FMQ + 1.8) from the same seamount. In this case, we interpret both the harzburgites and dunites as linked to mantle melting (20-25 % fractional melting) in a supra-subduction zone environment The results thus indicate that the forearc is underlain by at least two types of mantle lithosphere, one being trapped or accreted oceanic lithosphere, the other being lithosphere formed by subduction-related melting. They also demonstrate that both types of mantle lithosphere may have undergone extensive interaction with subduction-derived magmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fate of subducted sediment and the extent to which it is dehydrated and/or melted before incorporation into arc lavas has profound implications for the thermo-mechanical nature of the mantle wedge and models for crustal evolution. In order to address these issues, we have undertaken the first measurements of 10Be and light elements in lavas from the Tonga-Kermadec arc and the sediment profile at DSDP site 204 outboard of the trench. The 10Be/9Be ratios in the Tonga lavas are lower than predicted from flux models but can be explained if (a) previously estimated sediment contributions are too high by a factor of 2-10, (b) the top 1-22 m of the incoming sediment is accreted, (c) large amounts of sediment erosion are proposed, or (d) the sediment component takes several Myr longer than the subducting plate to reach the magma source region beneath Tonga. The lavas form negative Th/Be-Li/Be arrays that extend from a depleted mantle source composition to lower Th/Be and Li/Be ratios than that of the bulk sediment. Thus, these arrays are not easily explained by bulk sediment addition and, using partition coefficients derived from experiments on the in-coming sediment, we show that they are also unlikely to result from fluid released during dehydration of the sediment (or altered oceanic crust). However, partial melts of the dehydrated sediment residue formed at ~800 °C during the breakdown of amphibole +/- plagioclase and in the absence of cordierite have significantly lowered Th/Be ratios. The lava arrays can be successfully modelled as 10-15% partial melts of depleted mantle after it has been enriched by the addition of 0.2-2% of these partial melts. Phase relations suggest that this requires that the top of the subducting crust reaches temperatures of ~800 °C by the time it attains ~ 80 km depth which is in excellent agreement with the results of recent numerical models incorporating a temperature-dependent mantle viscosity. Under these conditions the wet basalt solidus is also crossed yet there is no recognisable eclogitic signal in the lavas suggesting that on-going dehydration or strong thermal gradients in the upper part of the subducting plate inhibit partialmelting of the altered oceanic crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following data paper summarizes diatom biostratigraphic data from sediments drilled in the Costa Rica accretionary wedge during Ocean Drilling Program Leg 170. Quaternary through lower Miocene diatom zones characteristic of the equatorial Pacific region are recognized in the reference section, Site 1039, which was drilled on the downgoing Cocos plate. At Sites 1040-1043, where the recovered silty clay units are primarily wedge and apron sediments that overlie the underthrust sections, diatoms are generally low in abundance, and complete zonation of the cores was not possible above the décollement surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Barrow, the northernmost point in Alaska, is one of the most intensively studied areas in the Arctic. However, paleoenvironmental evidence is limited for northern Alaska for the Lateglacial-Holocene transition. For a regional paleoenvironmental reconstruction, we investigated a permafrost ice-wedge tunnel near Barrow, Alaska. The studied site was first excavated in the early 1960s and intercepts a buried ice-wedge system at 3-6 m depth below the surface. A multi-methodological approach was applied to this buried ice-wedge system and the enclosing sediments, which in their combination, give new insight into the Late Quaternary environmental and climate history. Results of geochronological, sedimentological, cryolithological, paleoecological, isotope geochemical and microbiological studies reflect different stages of mid to late Wisconsin (MW to LW), Allerod (AD), Younger Dryas (YD), Preboreal (PB), and Late Holocene paleoenvironmental evolution. The LW age of the site is indicated by AMS dates in the surrounding sediments of 21.7 kyr BP at the lateral contact of the ice-wedge system as well as 39.5 kyr BP below the ice-wedge system. It is only recently that in this region, stable isotope techniques have been employed, i.e. to characterize different types of ground ice. The stable isotope record (oxygen: d18O; hydrogen: dD) of two intersecting ice wedges suggests different phases of the northern Alaskan climate history from AD to PB, with radiocarbon dates from 12.4 to 9.9 kyr BP (ranging from 14.8 to 10.6 kyr cal BP). Stable isotope geochemistry of ice wedges reveals winter temperature variations of the Lateglacial-Holocene transition including a prominent YD cold period, clearly separated from the warmer AD and PB phases. YD is only weakly developed in summer temperature indicators (such as pollen) for the northern Alaska area, and by consequence, the YD cold stadial was here especially related to the winter season. This highlights that the combination of winter and summer indicators comprehensively describes the seasonality of climate-relevant processes in discrete time intervals. The stable isotope record for the Barrow buried ice-wedge system documents for the first time winter climate change at the Lateglacial-Holocene transition continuously and at relatively high (likely centennial) resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western Pacific includes many volcanic island arc and backarc complexes, yet multi-isotopic studies of them are rare. Basement rocks of the Sea of Japan backarc basin were encountered at Sites 794,795, and 797, and consisted of basaltic sills and lava flows. These rocks exhibit a broad range in isotopic composition, broader than that seen in any other western Pacific arc or backarc system: 87Sr/86Sr = 0.70369 to 0.70499, 143Nd/144Nd = 0.51267 to 0.51317, 206Pb/204Pb = 17.64 to 18.36. The samples form highly correlated arrays between very depleted mid-ocean ridge basalt (MORB) and the Pacific pelagic sediment fields on Pb-Pb plots. Similarly, on plots of Sr-Pb and Nd-Pb, the Sea of Japan samples lie on mixing curves between depleted mantle and enriched mantle ("EM II"), which is interpreted to be of average crustal or pelagic sediment composition. The source of these backarc rocks appears to be a MORB-like mantle source, contaminated by pelagic sediments. Unlike the Mariana and Izu arc/backarc systems, Japanese arc and backarc rocks are indistinguishable from each other in a Sr-Nd isotope plot, and have similar trends in Pb-Pb plots. Thus, sediment contamination of the mantle wedge appears to control the isotopic compositions of both the arc and backarc magmas. Two-component mixing calculations suggest that the percentage of sediments in the magma source varies from 0.5% to 2.5%.