4 resultados para Weak Organic Electrolytes

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic geochemical and organic petrographic methods were used to study three Lower to middle Cretaceous sediment samples from Hole 535 in the southeastern Gulf of Mexico for organic matter contents and origin and level of maturation. All three samples contain mixed kerogen Type II/III organic matter with a maturity corresponding to about 0.4% vitrinite reflectance. The marine component increases with stratigraphic age, and microbial reworking of the organic matter is significant in each age. The lower two samples of Hauterivian to Valanginian age appear to be impregnated (or contaminated) with soluble polar organic compounds, but there is only a weak indication for the presence of more mature, nonindigenous hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to assess whether the oxygen-minimum zone (OMZ) in the Arabian sea has an effect on the preservation and composition of organic matter in surface sediments we investigated samples from three different transects on the Pakistan continental margin across the OMZ. In addition to determining the total amount of organic carbon (TOC), we analyzed the extractable lipids by gas chromatography, combined gas chromatography/mass spectrometry, and compound-specific stable carbon isotope measurements. The extractable lipids are dominated by marine organic matter as indicated by the abundance of lipids typical of marine biota and by the bulk and molecular isotopic composition. Sediments from within the OMZ are enriched in organic carbon and in several extractable lipids (i.e. phytol, n-alcohols, total sterols, n-C35 alkane) relative to stations above and below this zone. Other lipid concentrations, such as those of total n-fatty acids and total n-alkanes fail to show any relation to the OMZ. Only a weak correlation of TOC with mineral surface area was found in sediments deposited within the OMZ. In contrast, sediments from outside the OMZ do not show any relationship between TOC and surface area. Among the extractable lipids, only the n-alkane concentration is highly correlated with surface area in sediments from the Hab and Makran transects. In sediments from outside the OMZ, the phytol and sterol concentrations are also weakly correlated with mineral surface area. The depositional environment of the Indus Fan offers the best conditions for an enhanced preservation of organic matter. The OMZ, together with the undisturbed sedimentation at moderate rates, seems to be mainly responsible for the high TOC values in this area. Overall, the type of organic matter and its lability toward oxic degradation, the mineral surface area, the mineral composition, and possibly the secondary productivity by (sedimentary) bacteria also appear to have an influence on organic matter accumulation and composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the role of the ocean within the global carbon cycle, detailed information is required on key-processes within the marine carbon cycle; bio-production in the upper ocean, export of the produced material to the deep ocean and the storage of carbon in oceanic sediments. Quantification of these processes requires the separation of signals of net primary production and the rate of organic matter decay as reflected in fossil sediments. This study examines the large differences in degradation rates of organic-walled dinoflagellate cyst species to separate these degradation and productivity signals. For this, accumulation rates of cyst species known to be resistant (R-cysts) or sensitive (S-cysts) to aerobic degradation of 62 sites are compared to mean annual chlorophyll-a, sea-surface temperature, sea-surface salinity, nitrate and phosphate concentrations of the upper waters and deep-water oxygen concentrations. Furthermore, the degradation of sensitive cysts, as expressed by the degradation constant k and reaction time t, has been related to bottom water [O2]. The studied sediments were taken from the Arabian Sea, north-western African Margin (North Atlantic), western-equatorial Atlantic Ocean/Caraibic, south-western African margin (South Atlantic) and Southern Ocean (Atlantic sector). Significant relationships are observed between (a) accumulation rates of R-cysts and upper water chlorophyll-a concentrations, (b) accumulation rates of S-cysts and bottom water [O2] and (c) degradation rates of S-cysts (kt) and bottom water [O2]. Relationships that are extremely weak or are clearly insignificant on all confidence intervals are between (1) S-cyst accumulation rates and chlorophyll-a concentrations, sea-surface temperature (SST), sea-surface salinity (SSS), phosphate concentrations (P) and nitrate concentrations (N), (2) between R-cyst accumulation rates and bottom water [O2], SST, SSS, P and N, and between (3) kt and water depth. Co-variance is present between the parameters N and P, N, P and chlorophyll-a, oxygen and water depth. Correcting for this co-variance does not influence the significance of the relationship given above. The possible applicability of dinoflagellate cyst degradation to estimate past net primary production and deep ocean ventilation is discussed.