11 resultados para Wavelet transform
em Publishing Network for Geoscientific
Resumo:
This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.
Resumo:
Continuous Wavelet Transform was applied to bed elevation profiles (BEP) and used in the study in order to recognise the spatial distribution of bedforms and discriminate between their hierarchical scales. In particular, the spatial distribution of the hierarchical scales is highlighted by averaging wavelet power spectra over different bands, and displayed as the wavelet variance of the BEP (see map). Four dune classes were defined, following Ashley (1990): small dunes (1-5 m), medium dunes (5-10 m), large dunes (10-100 m), and very large dunes (>100 m).
Resumo:
Gabbroic cumulates drilled south of the Kane Transform Fault on the slow-spread Mid-Atlantic Ridge preserve up to three discrete magnetization components. Here we use absolute age constraints derived from the paleomagnetic data to develop a model for the magmatic construction of this section of the lower oceanic crust. By comparing the paleomagnetic data with mineral compositions, and based on thermal models of local reheating, we infer that magmas that began crystallizing in the upper mantle intruded into the lower oceanic crust and formed meter-scale sills. Some of these magmas were crystal-laden and the subsequent expulsion of interstitial liquid from them produced '"cumulus" sills. These small-scale magmatic injections took place over at least 210 000 years and at distances of ~3 km from the ridge axis and may have formed much of the lower crust. This model explains many of the complexities described in this area and can be used to help understand the general formation of oceanic crust at slow-spread ridges.