7 resultados para Wave energy converter

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a field campaign in the Austral spring 2012 the sedimentary architecture of a polar gravel-beach system at the southern coast of Potter Peninsula (Area 3) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 31 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the western coast of Potter Peninsula (Area 1) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 21 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons. However, the recent discovery of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6-10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700 ppm) and control (~ 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2 rises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uptake of anthropogenic emission of carbon dioxide is resulting in a lowering of the carbonate saturation state and a drop in ocean pH. Understanding how marine calcifying organisms such as coralline algae may acclimatize to ocean acidification is important to understand their survival over the coming century. We present the first long-term perturbation experiment on the cold-water coralline algae, which are important marine calcifiers in the benthic ecosystems particularly at the higher latitudes. Lithothamnion glaciale, after three months incubation, continued to calcify even in undersaturated conditions with a significant trend towards lower growth rates with increasing pCO2. However, the major changes in the ultra-structure occur by 589 µatm (i.e. in saturated waters). Finite element models of the algae grown at these heightened levels show an increase in the total strain energy of nearly an order of magnitude and an uneven distribution of the stress inside the skeleton when subjected to similar loads as algae grown at ambient levels. This weakening of the structure is likely to reduce the ability of the alga to resist boring by predators and wave energy with severe consequences to the benthic community structure in the immediate future (50 years).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.