21 resultados para Walker, Alice, 1944- . The Color Purple

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The core descriptions (chapter 7) summarize the most important results of the analysis of each sediment core following procedures applied during ODP/IODP expeditions. All cores were opened, described, and color-scanned. In the core descriptions the first column displays the lithological data that are based on visual analysis of the core and are supplemented by information from binocular and smear slide analyses. The sediment classification largely follows ODP/IODP convention. Lithological names consist of a principal name based on composition, degree of lithification, and/or texture as determined from visual description and microscopic observations. In the structure column the intensity of bioturbation together with individual or special features (turbidites, volcanic ash layers, plant debris, shell fragments, etc.) is shown. The hue and chroma attributes of color were determined by comparison with the Munsell soil color charts and are given in the color column in the Munsell notation. A GretagMacbethTM Spectrolino spectrophotometer was used to measure percent reflectance values of sediment color at 36 wavelength channels over the visible light range (380-730 nm) on all of the cores. The digital reflectance data of the spectrophotometer readings were routinely obtained from the surface (measured in 1 cm steps) of the split cores (archive half). The Spectrolino is equipped with a measuring aperture with folding mechanism allowing an exact positioning on the split core and is connected to a portable computer. The data are directly displayed within the software package Excel and can be controlled simultaneously. From all the color measurements, for each core the red/blue ratio (700 nm/450 nm) and the lightness are shown together with the visual core description. The reflectance of individual wavelengths is often significantly affected by the presence of minor amounts of oxyhydroxides or sulphides. To eliminate these effects, we used the red/blue ratio and lightness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflectance spectra collected during ODP Leg 172 were used in concert with solid phase iron chemistry, carbonate content, and organic carbon content measurements to evaluate the agents responsible for setting the color in sediments. Factor analysis has proved a valuable and rapid technique to detect the local and regional primary factors that influence sediment color. On the western North Atlantic drifts, sediment color is the result of primary mineralogy as well as diagenetic changes. Sediment lightness is controlled by the carbonate content while the hue is primarily due to the presence of hematite and Fe2+/Fe3+ changes in clay minerals. Hematite, most likely derived from the Permo-Carboniferous red beds of the Canadian Maritimes, is differentially preserved at various sites due to differences in reductive diagenesis and dilution by other sedimentary components. Various intensities for diagenesis result from changes in organic carbon content, sedimentation rates, and H2S production via anaerobic methane oxidation. Iron monosulfides occur extensively at all high sedimentation sites especially in glacial periods suggesting increased high terrigenous flux and/or increased reactive iron flux in glacials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Color variations were interpreted in paleoceanographic terms for the late Pliocene-Pleistocene sediments recovered by ODP Leg 172 on deep-sea drifts at Blake-Bahama Outer Ridge and northeastern Bermuda Rise. The color-derived parameters used in interpretation included predicted carbonate content, terrigenous fluxes, and hematite content. Abundance of Upper Carboniferous spores indicates that the hematite is probably derived from the Permo-Carboniferous red beds of the Canadian Maritimes. In the last 800 kyr sedimentation pattern changes on the Blake-Bahama Outer Ridge were determined by the sediment delivery to the deep basin as well as circulation changes. Sediment delivery increased during glacials (especially during the last 500 kyr and particularly since Stage 6). A fundamental change in the thermohaline circulation occurred at about 500 ka corresponding to the end of the Mid-Pleistocene Transition period at the onset of the predominant 100-kyr climate cyclicity. Sedimentation related to WBUC had intensified at that time and had become more focused at depths below 3000 m. Changes in hematite content and sedimentation rate show a pulse of sediment via the St. Lawrence outlet at the Pliocene-Pleistocene boundary suggesting that a likely change in the hydrography/physiography of the Laurentide Ice Sheet could have been involved in the climatic and ocean circulation changes at that time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of chert, porcellanite, and chalk/limestone from Cretaceous chert-bearing sections recovered during Leg 198 were studied to elucidate the nature and origin of chert color zonations with depth/age. Sedimentary structures, trace fossils, compactional features, sediment composition, texture, geochemistry, and diagenetic history were compared among lithologies. Trends in major and minor element composition were determined. Whereas geochemical analyses demonstrate systematic elemental differences among the different lithologies, there are less distinct patterns in composition for the colored cherts. The color of the chert appears to be related primarily to the amount of silica and secondarily to the proportion of other components. Red cherts are almost pure silica with only minor impurities. This may allow pigmentation from fine Fe oxides to dominate the color. These red cherts are from places where geophysical logs indicate that chert is the dominant rock type of the section. These red chert intervals cannot be unequivocally distinguished from surrounding chert-bearing lithologies in terms of sedimentary structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data report describes the results of post-Leg 172 sampling of Sites 1054, 1055, and 1063 for two purposes: to investigate the climatic significance of red-colored intervals in the hemipelagic sediments cored during Leg 172 and to better understand the stratigraphy and chronology of Carolina Slope Sites 1054 and 1055. Gravity cores collected from the Carolina Slope on site survey cruise Knorr 140/2 show very high rates of sedimentation during the Holocene and lower rates during the last glacial maximum (LGM). Because of the high rates, many of the sediments in the recovered cores never reached the LGM. In other cores, it is possible that deglacial oscillations have been mistaken for the LGM. Although radiocarbon dating could solve that problem, some of the gravity cores are at or very close to the Ocean Drilling Program (ODP) sites, and it is useful to compare the isotope stratigraphies among them before proceeding with dating. Furthermore, some of the site survey cores have red-colored intervals and others do not, even though there is some indication they are time equivalent. Either the stratigraphy is wrong, diagenesis has affected the color of the sediment, or red sediment is carried to some sites but not to others that differ in depth by only a few hundred meters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cores from Deep Sea Drilling Project Holes 501, 504B and 505B have an unusual near-vein zonation in basalts. Megascopically, zonation occurs as differently colored strips and zones whose typical thickness does not exceed 6 to 7 cm. Microscopically, the color of zones depends on variably colored clay minerals which are the products of low-temperature hydrothermal alteration in basalt. These differently colored zones form the so called "oxidative" type of alteration of basalts. Another "background," or, less precisely termed, "non-oxidative," type of alteration in basalts is characterized by large-scale, homogeneous replacement of olivine, and filling of vesicles and cracks by an olive-brown or olive-green clay mineral. The compositions of clay minerals of the "background" type of alteration, as well as the composition of co-existing titanomagnetites, were determined with an electron microprobe. There are sharp maxima in potassium and iron content, and minima in alumina, silica, and magnesia in clay minerals in the colored zones near veins. Coloring of clay and rock-forming minerals by iron hydroxides and a decrease of the amount of titanomagnetite, which apparently was the source of redeposited iron, occur frequently in colored zones. We assume that the large-scale "background" alteration in the basalts occurred under the effect of pore waters slowly penetrating through bottom sediments. Faulting can facilitate access of fresh sea water to basalts; thus above the general homogeneous background arise zones of "oxidative" alteration along fractures in basalts. The main factors controlling these processes are time (age of basalt), grain size, temperature, thickness of sedimentary cover, and heat flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical analyses of sediments from the top 24.5 m of Deep Sea Drilling Project hole 596 (23°51.20'S, 169°39.27'W) show great variability in the composition of pelagic clays accumulated in the South Pacific since the late Cretaceous. Elemental associations indicate that most of this variability can be attributed to variations in abundances of six sediment end-member components: detrital (eolian), andesitic (volcanic), hydrothermal, hydrogenous, phosphate (fish debris), and biogenic silica. We develop a sedimentation model which is used to infer processes that might have influenced the accumulation rates of these components over the last 85 million years. The accumulation of eolian detritus in the South Pacific shows some similarities to that observed in the North Pacific and has been largely controlled by global climate trends in the Cenozoic. Much of the variation in the accumulation of other sediment components likely reflects the paleoceanographic evolution of the South Pacific. The most notable change in the sedimentary environment occurred at about the Paleogene/Neogene boundary. At that time, significant changes in the color, mineralogy, and chemistry of the sediment probably reflect major shifts in climate mode as well as oceanic circulation in the central South Pacific region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sediment column overlying basement in the Lau Basin consists of a sequence of volcaniclastic turbidites interbedded with hemipelagic clayey nannofossil mixed sediments, overlain in turn by a sequence of hemipelagic clayey nannofossil oozes containing sporadic calcareous turbidites. The clayey nannofossil oozes and mixed sediments are pervasively stained by hydrothermally derived iron and manganese oxyhydroxides. Sharply defined, lighter colored bands occur in the hemipelagic sediments, immediately beneath some (but by no means all) volcaniclastic and calcareous turbidites. These are identified as reduction haloes, of a type previously identified in quite different turbidite/pelagic sequences. The haloes are attributed to the burial of labile surficial Corg by turbidites, followed by the remineralization of this Corg with Mn and Fe oxyhydroxides as electron acceptors. The resultant characteristic Mn and Fe concentration/depth profiles are described, and a model is proposed for their development. The color alteration of the halo is ascribed to the removal of Mn oxyhydroxides, because, although the Fe content fluctuates through the haloes, this does not appear to affect their color. Other elements (Co, Cu, and Ni) are also at low concentration levels in the haloes like Mn, consistent with remobilization and migration out of the halo section, although the profile shapes are not identical with those of Mn. The behavior of V is distinctive in that it appears to have migrated into the haloes to be enriched there. Haloes are unlikely to form if turbidite emplacement is erosive and removes the near-surface layer, which generally is the most fluid part of the sediment and contains the highest levels of reactive Corg to drive the reduction process. Conversely, the presence of a halo implies that emplacement of the overlying turbidite did not significantly erode the pre-existing sediment/water interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I present a new method for reconnaissance cyclostratigraphic study of continuously cored boreholes: the generation of detailed sediment color logs by digitizing Ocean Drilling Program (ODP) core photographs. The reliability of the method is tested by comparison with the spectrophotometer color log for the uppermost Paleocene-lowermost Eocene section (Chron C24r) at ODP Hole 1051A. The color log generated from Hole 1051A core photographs is essentially identical to the spectrophotometer log. The method is applied to the Chron C24r section at Holes 1051A and 690B, producing the first high-resolution geophysical log for the latter section. I calculate astronomically calibrated durations between bio- and chemostratigraphic events within Chron C24r by correlating the cyclostratigraphies for Holes 1051A and 690B. These durations are significantly different from previous estimates, indicating that the chronology of events surrounding the Paleocene/Eocene boundary will have to be revised. This study demonstrates that useful geophysical logs can be generated from digitized ODP and DSDP core photographs. The method is of practical use for sections lacking high-resolution logs, as is the case for most lower Paleogene sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples taken at 10 cm intervals from DSDP Core 532B-17 contain variations in carbonate, opal, organic carbon, and terrigenous components that correlate with light-dark cycles in sediment color. The core site, at 1300 m water depth, is well above the CCD, yet the color variations appear to result largely from cyclical fluctuations in carbonate dissolution, which was greater during glacial periods. Higher concentrations of organic carbon and of terrigenous sediment components correlate with enhanced carbonate dissolution, but opal concentrations inversely correlate and suggest that biological productivity at this site diminished during glacial periods. A complicated glacial-interglacial picture emerges from the data. In interglacial times, upwelling associated with the Benguela Current produced abundant opaline material, organic matter was fairly well preserved, and carbonate was only moderately dissolved. In glacial times, the upwelling core shifted as sea level fell and winds intensified. Productivity in the waters over Site 532 decreased, but lateral supply of oxidizable organic matter enhanced carbonate dissolution, giving rise to light-dark cycles in these sediments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barremian through uppermost Aptian strata from ODP Hole 641C, located upslope of a tilted fault block on the Galicia margin (northwest Spain), are syn-rift sediments deposited in the bathyal realm and are characterized by rapid sedimentation from turbidity currents and debris flows. Calcarenite and calcirudite turbidites contain shallow-water carbonate, terrigenous, and pelagic debris, in complete or partial Bouma sequences. These deposits contain abraded micritized bioclasts of reefal debris, including rudist fragments. The youngest turbidite containing shallow-water carbonate debris at Site 641 defines the boundary between syn-rift and post-rift sediments; this is also the boundary between Aptian and Albian sediments. Some Aptian turbidites are partially silicified, with pore-filling chalcedony and megaquartz. Adjacent layers of length-fast and -slow chalcedony are succeeded by megaquartz as the final pore-filling stage within carbonate reef debris. Temperatures of formation, calculated from the oxygen isotopic composition of the authigenic quartz, are relatively low for formation of quartz but are relatively warm for shallow burial depths. This quartz cement may be interpreted as a rift-associated precipitate from seawater-derived epithermal fluids that migrated along a fault associated with the tilted block and were injected into the porous turbidite beds. These warm fluids may have cooled rapidly and precipitated silica at the boundaries of the turbidite beds as a result of contact with cooler pore waters. The color pattern in the quartz cement, observed by cathodoluminescence and fluorescence techniques, and changes in the trace lement geochemistry mimic the textural change of the different quartz layers and indicates growth synchronism of the different quartz phases. Fluorescence petrography of neomorphosed low-Mg-calcite bioclasts in the silicified turbidites shows extensive zonation and details of replacive crystal growth in the bioclasts that are not observed by cathodoluminescence. Fluorescence microscopy also reveals a competitive growth history during neomorphism of the adjacent crystals in an altered carbonate bioclast. Barremian-Aptian background pelagic sediments from Hole 641C have characteristics similar to pelagic sediments from the Blake-Bahama Formation described by Jansa et al. (1979) from the western North Atlantic. Sediments at this site differ from the Blake-Bahama Formation type locality in that the Barremian-Aptian pelagic sediments have a higher percentage of dark calcareous claystone and some turbidites are silicified at Site 641. The stable isotopic composition of the pelagic marlstones from Site 641 is similar to those of other Berriasian-Aptian pelagic sediments from the Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One hundred thirty-one marker horizons relating to the distinct and traceable layers were described for the Owen Ridge and Oman Margin sites. The correlations incorporated the calculations of true depth, corrected for coring disturbance and gas expansion. Intersite correlation of marker horizons has been improved based on color density data, measured with video densitometer, and oxygen isotope stratigraphic data. Distinct hiatuses were detected by the intersite correlation of the marker horizons in the Owen Ridge. The hiatuses are related to submarine slides induced by increasing gravitational instability for the accumulation of the pelagic sediments on the top of the Owen Ridge. The large amount of sediment supply with variable lithofacies during the glacial stages is represented by layer-bylayer correlation in the Oman Margin. The color density patterns with glacial-interglacial cycles are controlled by the balance of organic carbon content, increasing in the interglacial stages with strong upwelling induced by the southwest monsoon, and flux of terrigenous matter, increasing in the glacial stages. The present distinct climatic cycle relating to the southwest monsoon has been developed since Stage 8, 250 ka. The large amount of sediment supply in the glacial stages can be assumed as fluvial in origin from the humid Arabian Peninsula, relating to the weakened Tropical Easterly Jet, which is induced by the counter-current of the southwest monsoon and maintains the present arid climate in the north Africa and Arabian Peninsula.