511 resultados para WC

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement lavas from Sites 756, 757, and 758 on Ninetyeast Ridge are tholeiitic basalts. Lavas from Sites 756 and 757 appear to be subaerial eruptives, but the lowermost flows from Hole 758A are pillow lavas. In contrast to the compositional variation during the waning stages of Hawaiian volcanism, no alkalic lavas have been recovered from Ninetyeast Ridge and highly evolved lavas were recovered from only one of seven drill sites (DSDP Site 214). All lavas from Site 758 have relatively high MgO contents (8-10 wt%), and they are less evolved than lavas from Sites 756 and 757. Although abundances of alkali metals in these Ninetyeast Ridge basalts were significantly modified by postmagmatic alteration, abundances of other elements reflect magmatic processes. At Site 757 most of the lavas are Plagioclase cumulates, but lava compositions require two compositionally distinct, AhCb-rich parental magmas, perhaps segregated at relatively low mantle pressures. In addition, at both Sites 756 and 758 more than one compositionally distinct parental magma is required. The compositions of these Ninetyeast Ridge lavas, especially those from Site 758, require a source component with a depleted composition; specifically, the abundance ratios Th/Ta, Th/La, Ba/Nb, Ba/La, and La/Ce in these lavas are generally less than the ratios inferred for primitive mantle. Lavas from Ninetyeast Ridge and the Kerguelen Archipelago have very different chondrite-normalized REE patterns, with lower light REE/heavy REE (LREE/HREE) ratios in lavas from Ninetyeast Ridge. However, lavas from Sites 757 and 758 have Pb isotope ratios that overlap with the field defined by lavas from the Kerguelen Archipelago (Weis and Frey, this volume). Therefore, these Ninetyeast Ridge lavas contain more of a component that is relatively depleted in LREE and other highly incompatible elements, but have similar amounts of the component that controls radiogenic Pb isotopes. A model involving mixing between components related to a depleted source and an enriched plume source has been proposed for the oldest Kerguelen Archipelago basalts and Ninetyeast Ridge lavas. Although the incompatible element characteristics of the Ninetyeast Ridge lavas are intermediate between depleted MORB and Kerguelen Archipelago basalts, these data are not consistent with a simple two-component mixing process. A more complex model is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.