3 resultados para Voxel-based morphometry

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a technical description in html format of simple fortran programs for Macintosh for the morphometric analysis of tests planktonic foraminifera under reflected light, with special focus on the Neogene group of Globorotalia menardii. The second part of this report gives information and performance tests about the development of AMOR (Automated Measurement system for the mORphometry of microfossils). AMOR is Windows based and helps to orientate and collect digital images of menardiform globorotalids. The above fortran programs may be useful to extract and analyze some morphometric parameters from images collected with AMOR. After unzipping the archive file please open the Start.html file using a common web browser like firefox. In case of any questions or problems, please contact Michael W. Knappertsbusch (mailto:michael.knappertsbusch@unibas.ch).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.