3 resultados para Voltammetric behaviors
em Publishing Network for Geoscientific
Resumo:
We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 µm**2/s vs. 8.4 × 104 µm**2/s). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients.
Resumo:
Warming seawater temperatures and ocean acidification on the coastal western Antarctic Peninsula pose unique challenges to stenothermal marine invertebrates. The present study examines prospective sub-lethal effects of elevated temperature, pCO2, and resultant decrease in seawater pH, on righting behavior and maximal escape speeds for two common gastropods, the limpet Nacella concinna (Strebel) and mesogastropod snail Margarella antarctica (Lamy). Replicate individuals held in individual containers were exposed to four combinations of seawater temperature (1.5 °C-current average, 3.5 °C-projected average by 2100) and pH (pH 8.0-current average, pH 7.8-projected average by 2100 as a result of elevated pCO2 levels) for a period of 6 weeks. Following this chronic exposure, righting behavior, determined for the limpets as proportion to right over 24 h and for snails as time to right, as well as maximum escape speed following contact with a sea star predator were measured. We found no significant differences in proportions of limpets displaying the capacity to right among the four temperature-pH treatments. However, there was a significant temperature-pH interaction effect for mean righting times in snails, indicating that the effect of pH on the time to right is dependent on temperature. We found no significant effects of temperature or pH on mean maximal escape speed in limpets. Additionally, we observed a significant temperature-pH interaction effect for mean maximal escape speed in snails. These interactive effects make it difficult to make clear predictions about how these environmental factors may impact behavioral responses.
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.