11 resultados para Volcanoes -- Catalonia -- Alt Empordà

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modal compositions of volcaniclastic sands recovered on Leg 126 of the Ocean Drilling Project (Izu-Bonin island arc and Sumisu Rift) are similar to those from other intraoceanic island arcs and associated marginal basins. These sands are dominantly composed of volcanic-lithic and plagioclase-feldspar grains derived from the Izu-Bonin magmatic arc and intrarift volcanoes. The glass color of volcanic fragments ranges from black (tachylite) to brown to colorless; individual samples usually contain a mixture of glass colors. Two of the forearc sites (792 and 793) are more heterogeneous with respect to glass color than the backarc/Sumisu Rift sites (788, 790, and 791). Site 787 forearc sands are dominantly composed of tachylite grains; their unique composition may be attributed either to winnowing by submarine-canyon currents or to a volcanic island source. There is an increase in the proportions of pumice/colorless glass, felsitic grains, and quartz within sediments of the incipient backarc basin (Sumisu Rift), as compared with the forearc-basin sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic-geochemical study revealed presence of mantle He (3He/4He up to 223x10**-8) in gases from mud volcanoes of Eastern Georgia. This fact confirms that the Middle Kura basin fill encloses an intrusive body previously distinguished from geophysical data. Wide variations of carbon isotopic composition d13C in CH4 and CO2 and chemical composition of gas and water at temporally constant 3He/4He ratio indicate their relation with crustal processes. Unusual direct correlations of 3He/4He ratio with concentrations of He and CH4 and 40Ar/36Ar ratio can be explained by generation of gas in the Cenozoic sequence of the Middle Kura basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2-C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between -62 and -66 per mill PDB in d13C, and between -185 and -209 per mill SMOW in dD, indicating a mainly biogenic origin with an admixture of thermogenic gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2<250) and stable carbon isotopic compositions (d13C-CH4 >-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.