3 resultados para Visual control
em Publishing Network for Geoscientific
Resumo:
The Radarsat-1 Antarctic Mapping Project (RAMP) compiled a mosaic of Antarctica and the adjacent ocean zone from more than 3000 high-resolution Synthetic Aperture Radar (SAR) images acquired in September and October 1997. The mosaic with a pixel size of 100 m was used to determine iceberg size distributions around Antarctica, combining an automated detection with a visual control of all icebergs larger than 5 km**2 and correction of recognized false detections. For icebergs below 5 km**2 in size, the numbers of false detections and accuracies of size retrievals were analyzed for three test sites. Nearly 7000 icebergs with horizontal areas between 0.3 and 4717.7 km**2 were identified in a near-coastal zone of varying width between 20 and 300 km. The spatial distributions of icebergs around Antarctica were calculated for zonal segments of 20° angular width and related to the types of the calving fronts in the respective section. Results reveal that regional variations of the size distributions cannot be neglected. The highest ice mass accumulations were found at positions of giant icebergs (> 18.5 km) but also in front of ice shelves from which larger numbers of smaller icebergs calve almost continuously. Although the coastal oceanic zone covered by RAMP is too narrow compared to the spatial coverage needed for oceanographic research, this study nevertheless demonstrates the usefulness of SAR images for iceberg research and the need for repeated data acquisitions extending ocean-wards over distances of 500 km and more from the coast to monitor iceberg melt and disintegration and the related freshwater input into the ocean.
Resumo:
1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
Resumo:
Among the groups of oceanic microfossils, only Radiolaria occur in abundances and preservation states sufficient to provide biostratigraphic control for restricted intervals within sediments recovered in Hole 1223A. The distribution of these microfossils has been divided into four major intervals, A-D. Radiolaria distribution Interval A occupies the depth range 0-3.0 meters below seafloor (mbsf), where the abundance of specimens is very low and preservation is poor. Radiolaria distribution Interval B occupies the depth range 3.02-7.1 mbsf. Radiolaria in Interval B are locally rare to abundant and well preserved, and assemblages range in age from pure early Eocene to early Eocene admixed with late Neogene taxa. Radiolaria distribution Interval C occupies the depth range 7.1-36.99 mbsf and is characterized by sediments either barren of microfossils or containing extremely rare early Eocene specimens. Radiolaria distribution Interval D occupies the depth range 36.99-38.7 mbsf (base of the recovered sedimentary section), where early Eocene Radiolaria are present in rare to common frequencies, but opal-A to opal-CT recrystallization has degraded the preservation state. The late Neogene assemblage of Radiolaria distribution Interval B is dated at 1.55-2.0 Ma, based on occurrences of Eucyrtidium matuyamai, Lamprocyclas heteroporos, and Theocorythium trachelium trachelium. The early Eocene assemblage of Radiolaria distribution Intervals B and D is somewhat problematically assigned to the Buryella clinata Zone.