30 resultados para Visibility distance.
em Publishing Network for Geoscientific
Resumo:
The density, species composition, and possible change in the status of pack ice seals within the Weddell Sea were investigated during the 1997/1998 summer cruise of the RV "Polarstern" (ANT-XV/3, PS48). Comparisons were made with previous surveys in the Weddell Sea where it was assumed that all seals were counted in a narrow strip on either side oft he ship or aircraft. A total of 15 aerial censuses were flown during the period 23 January - 7 March 1998 in the area bounded by 07°08' and 45°33' West longitude. The censused area in the eastern Weddell Sea was largely devoid of pack ice while a well circumscribed pack ice field remained in the western Weddell Sea. A total of 3,636 (95.4 %) crabeater seals, 21 (0.5 %) Ross seals, 45 (1.2 %) leopard seals and 111 (2.9 %) Weddell seals were observed on the pack ice during a total of 1,356.57 linear nautical miles (244.2 nm) of transect line censused. At a mean density of 21.16 1/nm**2 over an area of 244.2 nm, it is the highest densities on record for crabeater seals, density of up to 411.7 1/nm**2 being found in small areas. The overall high densities of seals (30.18 1/nm**2) recorded for the eastern Weddell Sea (27.46 1/nm**2, 0.27 1/nm**2, and 0.66 1/nm**2 for crabeater, leopard and Weddell seals respectively) is a consequence of the drastically reduced ice cover and the inverse relationship that exists between cover and seal densities. Ross seal densities (0.08 1/nm**2) were the lowest on record fort the area. It is suggested that seals largely remain within the confines of the pack ice despite seasonal and annual changes in its distribution. Indications are that in 1998 the El Niño has manifested itself in the Weddell Sea, markedly influencing the density and distribution of pack ice seals.
Resumo:
In the coming decades, artificial defence structures will increase in importance worldwide for the protection of coasts against the impacts of global warming. However, the ecological effects of such structures on the natural surroundings remain unclear. We investigated the impact of experimentally introduced tetrapod fields on the demersal fish community in a hard-bottom area in the southern North Sea. The results indicated a significant decrease in fish abundance in the surrounding area caused by migration effects towards the artificial structures. Diversity (HB) and evenness (E) values exhibited greater variation after the introduction of the tetrapods. Additionally, a distinct increase in young-of-the-year (YOY) fish was observed near the structures within the second year after introduction. We suggest that the availability of adequate refuges in combination with additional food resources provided by the artificial structures has a highly species-specific attraction effect. However, these findings also demonstrate that our knowledge regarding the impact of artificial structures on temperate fish communities is still too limited to truly understand the ecological processes that are initiated by the introduction of artificial structures. Long-term investigations and additional experimental in situ work worldwide will be indispensable for a full understanding of the mechanisms by which coastal defence structures interact with the coastal environment.
Resumo:
The micro-scale spatial distribution patterns of a demersal fish and decapod crustacean assemblage were assessed in a hard-bottom kelp environment in the southern North Sea. Using quadrats along line transects, we assessed the in situ fish and crustacean abundance in relation to substratum types (rock, cobbles and large pebbles) and the density of algae. Six fish and four crustacean species were abundant, with Ctenolabrus rupestris clearly dominating the fish community and Galathea squamifera dominating the crustacean community. Differences in the substratum types had an even stronger effect on the micro-scale distribution than the density of the dominating algae species. Kelp had a negative effect on the fish abundances, with significantly lower average densities in kelp beds compared with adjacent open areas. Averaged over all of the substrata, the most attractive substratum for the fish was large pebbles. In contrast, crustaceans did not show a specific substratum affinity. The results clearly indicate that, similar to other complex systems, significant micro-scale species-habitat associations occur in northern hard-bottom environments. However, because of the frequently harsh environmental conditions, these habitats are mainly sampled from ships with sampling gear, and the resulting data cannot be used to resolve small-scale species-habitat associations. A detailed substratum classification and community assessment, often only possible using SCUBA diving, is therefore important to reach a better understanding of the functional relationships between species and their environment in northern temperate waters, knowledge that is very important with respect to the increasing environmental pressure caused by global climate change.