958 resultados para Viking age silver
em Publishing Network for Geoscientific
Resumo:
A well-dated high-resolution d13C record of the last 2400 a, based on the benthic foraminifera Cassidulina laevigata, is presented for Gullmar Fjord, Sweden. The time interval covers die Roman Warm Period (RWP), the Viking Age/Medieval Warm Period (VA/MWP), the little Ice Age (LIA) and the most recent warming. There is little variation in the d13C record until the early Viking Age (AD 800), when the d13C signal becomes significantly more negative and continues to decrease throughout the VA/MWP, The d13C signal increases both at the beginning and at the end of the LIA but is marked by more negative values during the larger part of the period. Since about 1970, the d13C values are more negative than the long-term average. This general negativity of the record may result from a higher flux of organic matter, possibly of terrestrial origin due to land-use changes together with moderate changes in stagnation periods since the VA/MWP. In most recent times, the oceanic Suess effect together with increased number of extended stagnation periods are probably the main causes of the shift towards more negative d13C values.
Resumo:
The upper 200 m of the sediments recovered during IODP Leg 302, the Arctic Coring Expedition (ACEX), to the Lomonosov Ridge in the central Arctic Ocean consist almost exclusively of detrital material. The scarcity of biostratigraphic markers severely complicates the establishment of a reliable chronostratigraphic framework for these sediments, which contain the first continuous record of the Neogene environmental and climatic evolution of the Arctic region. Here we present profiles of cosmogenic 10Be together with the seawater-derived fraction of stable 9Be obtained from the ACEX cores. The down-core decrease of 10Be/9Be provides an average sedimentation rate of 14.5 ± 1 m/Ma for the uppermost 151 m of the ACEX record and allows the establishment of a chronostratigraphy for the past 12.3 Ma. The age-corrected 10Be concentrations and 10Be/9Be ratios suggest the existence of an essentially continuous sea ice cover over the past 12.3 Ma.
Resumo:
The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 m record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ~1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ~500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both.
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.