7 resultados para Victoria - Rural conditions
em Publishing Network for Geoscientific
Resumo:
This study projects land cover probabilities under climate change for corn (maize), soybeans, spring and winter wheat, winter wheat-soybean double cropping, cotton, grassland and forest across 16 central U.S. states at a high spatial resolution, while also taking into account the influence of soil characteristics and topography. The scenarios span three oceanic-atmospheric global circulation models, three Representative Concentration Pathways, and three time periods (2040, 2070, 2100). As climate change intensifies, the suitable area for all six crops display large northward shifts. Total suitable area for spring wheat, followed by corn and soybeans, diminish. Suitable area for winter wheat and for winter wheat-soybean double-cropping expand northward, while cotton suitability migrates to new, more northerly, locations. Suitability for forest intensifies in the south while yielding to crops in the north; grassland intensifies in the western Great Plains as crop suitability diminishes. To maintain current broad geographic patterns of land use, large changes in the thermal response of crops such as corn would be required. A transition from corn-soybean to winter wheat-soybean doubling cropping is an alternative adaptation.
Resumo:
The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.
Resumo:
The composition of algal pigments and extracellular polymeric substances (EPS) was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica) with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.
Resumo:
Total concentrations of algal pigments, organic C, C, N, P and S were determined in surface sediments from the littoral zone of 21 lakes in ice-free areas of northern Victoria Land (Antarctica) with different climatic and environmental conditions. Concentrations of major ions and nutrients were also determined in water samples from the same lakes. The latter samples had extremely variable chemical compositions; however, all the lakes resulted oligotrophic. Pigment concentrations in surface sediments were comparable to those reported for other Antarctic lakes and lower than those in oligotrophic lakes at lower latitudes. Cyanophyta, Chlorophyta and Bacillariophyta were the main taxa identified. These taxa correspond to those reported in previous microscopy-based studies on Antarctic phytoplankton and phytobenthos. Discriminant Function Analysis and Canonical Correspondence Analysis of data indicate that the distribution of pigments in these Victoria Land lakes depends mainly on their geographical location (particularly the distance from the sea) and nutrient status.
Resumo:
Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems.
Resumo:
Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.
Resumo:
The Little Ice Age (LIA) is one of the most prominent climate shifts in the past 5000 yrs. It has been suggested that the LIA might be the most recent of the Dansgaard-Oeschger events, which are better known as abrupt, large scale climate oscillations during the last glacial period. If the case, then according to Broecker (2000a, 2000b) Antarctica should have warmed during the LIA, when the Northern Hemisphere was cold. Here we present new data from the Ross Sea, Antarctica, that indicates surface temperatures were ~2 °C colder during the LIA, with colder sea surface temperatures in the Southern Ocean and/or increased sea-ice extent, stronger katabatic winds, and decreased snow accumulation. Whilst we find there was large spatial and temporal variability, overall Antarctica was cooler and stormier during the LIA. Although temperatures have warmed since the termination of the LIA, atmospheric circulation strength has remained at the same, elevated level. We conclude, that the LIA was either caused by alternative forcings, or that the sea-saw mechanism operates differently during warm periods.