26 resultados para Very high frequency
em Publishing Network for Geoscientific
Resumo:
High-frequency data collected continuously over a multiyear time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in-situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time-series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observations in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation.
Resumo:
Biogenic records of the marine palaeoproductivity (carbonates, organic carbon, and C37 alkenones) and the molecular stratigraphy of past sea surface temperatures (SSTs; UK'37) were studied at high resolution in two cores of the Iberian Margin. The comparison of these records indicates that the oceanographic conditions switched abruptly during the past 160 kyr between three kinds of regimes. A first regime with high (17-22°C) SST and low productivity typifies the interglacial periods, marine isotopic stages (MIS) 5 and 1. Several periods during MIS 6, 2, and the terminations II and I are characterised by about 4-5°C colder SST and a higher organic matter accumulation, both of which define the second regime. This anticorrelation between SST and marine productivity suggests that these variations are related to the intensity of the coastal upwelling. By contrast with this upwelling behaviour, extremely low biological productivity and very cold SST (6-12°C) occurred during short phases of glacial MIS 6, 4, and 2, and as abrupt events (~1 kyr or less) during MIS 3. The three oceanographic regimes are consistent with micropalaeontological changes in the same cores based on foraminifera and diatoms. The general trend of these hydrologic changes follows the long-term glacial/interglacial cycle, but the millennium scale variability is clearly related to Heinrich events and Dansgaard-Oeschger cycles. Strengthening of the upwelling corresponds probably to an intensification of the subtropical atmospheric circulation over the North Atlantic which was influenced by the presence of continental ice sheets. However, extreme glacial conditions due to massive discharges of icebergs interrupted the upwelling. Interestingly, both terminations II and I coincided with strong but transient intensification of the upwelling.
Resumo:
A high-resolution biochronology is presented for the Late Quaternary of the central Mediterranean. In the Late Pleistocene-Holocene successions three assemblage zones are distinguished on the basis of frequency patterns of planktic foraminifera. The age of these zones is determined by Accelerator Mass Spectrometry (AMS)14C dating. The zonal boundaries are dated at 12,700 yr B.P. (the end of Termination Ia) and 9600 yr B.P. (the start of Termination Ib), respectively. The AMS dates show that major changes in the planktic and benthic realms occurred synchronously over wide areas, although records of individual species may show important regional differences. In the studied areas, resedimentation processes revealed by anomalous successions of14C dates, play a far more important role than indicated by the sedimentological and micropaleontological data. Possibly these processes contribute to the very high accumulation rates in the glacial Zone III. Although the AMS technique has increased the accuracy of14C-measurements, admixture of older carbonate may still lead to substantial age differences between areas with different sedimentary regimes.
Resumo:
Analyses of terrigenous sediments from the Chilean continental slope off the southern border of the Atacama desert (27.5°S), focusing on illite crystallinity and the Fe:Al ratio of the sediments, reveal a high-frequency variability of the position of the Southern Westerlies, which is very similar to the coeval short-term climatic events known from Greenland ice cores and from North Atlantic sediments. Besides showing dominantly precession-driven variability in precipitation over the Andes, these analyses also reveal rapid changes in weathering intensity along the Chilean Coastal Range during the last 80,000 years. These rapid changes occur at much shorter timescales than the 19-100 kyr orbital forcing of the Milankovitch cycles.
Resumo:
Although the pulsating nature and the abruptness of the last deglaciation are well documented in marine and land records, very few marine records have so far been able to capture the high-frequency climatic changes recorded in the Greenland ice core Dye 3. We studied high-resolution sediment cores from SE Norwegian Sea, which display a detailed climatic record during the last deglaciation comparable to that of Dye 3. Accelerator mass spectrometry age control of the cores enables us to correlate this record in detail with continental records. The results indicate that the surface waters of the SE Norwegian Sea were seasonally ice free after 13,400 B.P. The Bølling/Allerød interstadial complex (13,200-11,200 B.P.) was a climatically unstable period with changing Arctic-Subarctic conditions. This period was punctuated by four progressively more severe sea surface temperature (SST) minima: between 12,900-12,800 B.P. (BCP I); 12,500-12,400 B.P. (BCP II); 12,300-12,000 B.P. (OD I); and 11,800-11,500 B.P. (OD II). The Younger Dryas (YD) (11,200-10,200 B.P.) represents the severest and most prolonged cold episode of this series of climatic deteriorations. It was bounded by very rapid SST changes and characterized by Arctic-Polar conditions. The first true warm Atlantic water incursion to the SE Norwegian Sea took place around 10,100 B.P., followed by a brief cooler condition between 9900-9600 B.P. (YD II). The early Holocene climatic optimum occurred between 8000-5000 B.P. A conceptual model is proposed where meltwater fluxes are suggested to cause the observed instability in the SST record.
Resumo:
A high-resolution multi-proxy record from Lake Van, eastern Anatolia, derived from a lacustrine sequence cored at the 357 m deep Ahlat Ridge (AR), allows a comprehensive view of paleoclimate and environmental history in the continental Near East during the last interglacial (LI). We combined paleovegetation (pollen), stable oxygen isotope (d18Obulk) and XRF data from the same sedimentary sequence, showing distinct variations during the period from 135 to 110 ka ago leading into and out of full interglacial conditions. The last interglacial plateau, as defined by the presence of thermophilous steppe-forest communities, lasted ca. 13.5 ka, from ~129.1-115.6 ka BP. The detailed palynological sequence at Lake Van documents a vegetation succession with several climatic phases: (I) the Pistacia zone (ca. 131.2-129.1 ka BP) indicates summer dryness and mild winter conditions during the initial warming, (II) the Quercus-Ulmus zone (ca. 129.1-127.2 ka BP) occurred during warm and humid climate conditions with enhanced evaporation, (III) the Carpinus zone (ca. 127.2-124.1 ka BP) suggest increasingly cooler and wetter conditions, and (IV) the expansion of Pinus at ~124.1 ka BP marks the onset of a colder/drier environment that extended into the interval of global ice growth. Pollen data suggest migration of thermophilous trees from refugial areas at the beginning of the last interglacial. Analogous to the current interglacial, the migration documents a time lag between the onset of climatic amelioration and the establishment of an oak steppe-forest, spanning 2.1 ka. Hence, the major difference between the last interglacial compared to the current interglacial (Holocene) is the abundance of Pinus as well as the decrease of deciduous broad-leaved trees, indicating higher continentality during the last interglacial. Finally, our results demonstrate intra-interglacial variability in the low mid-latitudes and suggest a close connection with the high-frequency climate variability recorded in Greenland ice cores.
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
Lithology, heavy mineral associations, and chemical composition of bottom sediments studied in two gravity cores from Isfjord, Western Spitsbergen (Svalbard) accompanied by high-frequency seismic records, provide a new insight on provenance and glaciomarine sedimentation in the fjord from the last deglaciation through Holocene.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10'N, 111°39.34'W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
On the Cape Verde Plateau, Neogene deposits are composed of major pelagic and hemipelagic sediments. These sediments show climatic sequences composed of two lithologic terms that differ in their siliciclastic and carbonate contents. Several turbiditic and contouritic sequences are interbedded in these deposits. Turbidite sequences are fine grained and thin bedded with a very low frequency (about 12 sequences during the Neogene). They are composed of quartz-rich siliciclastic or volcaniclastic sediments. Quartz-rich turbidites originated from the Senegalese margin. Their slightly higher frequency during the early Pliocene indicates that the stronger turbidity currents, and probably the most abundant continental inputs, occur at that period. Volcaniclastic turbidites are only present in the early Miocene (about 17 Ma) and the early Pleistocene (1 Ma). They have flown from adjacent Cape Verde Islands and reflect two episodes of high volcanic activity in this area. Contourite sequences, composed of biogenic sandy silts, represent less than 5% of the sediment pile and seem to have been mainly deposited during the late Pleistocene. These different sequences show clay mineral variations throughout Neogene time. Kaolinite is predominant in the Miocene and lower Pliocene deposits; this mineral decreases thereafter, with an increased trend of illite in the uppermost Pliocene and Pleistocene sediments, suggesting a change in sediment sources on the Saharan continent at about 2.6 Ma.
Resumo:
The Pliocene-Holocene sediments recovered on ODP Leg 114 from Holes 699A, 701C, and 704B are the subject of a detailed investigation to interpret changes in the Oceanographic environment of the South Atlantic in the vicinity of the Polar Front Zone (PFZ). The cores sample sediments at shallow (Hole 704B, 2532 m), intermediate (Hole 699A, 3716 m), and basinal (Hole 701C, 4647 m) depths. Sites 699 and 704 come under the influence of the Antarctic Circumpolar Current (ACC) and Circumpolar Deep Water. It is possible that the upper reaches of Antarctic Bottom Water (AABW) may also affect Hole 699A. Site 701 is influenced by AABW. Closely spaced samples were analyzed for grain-size distribution, sand fraction components, biosiliceous microfossils, organic carbon, and water content. PFZ migrations are traced using changes in bulk sedimentaccumulation rates and the abundance of the diatoms Actiniscus ssp. and Genus et species indet. 1 Fenner (1991), as well as changes in sediment grain size and composition. Diatomaceous sediments of Gilbert age in Hole 699A indicate that the PFZ was positioned over this site, but during the Gauss it migrated north, bringing in less productive Antarctic Surface Water. All cores document a very gradual southerly movement of the PFZ throughout the Matuyama (with some sharp fluctuations of the northen PFZ border over Site 704 between 1.45 and 1.83 m.y.). This regressive shift culminated in the late Matuyama. The latest Matuyama to earliest Brunhes record in Hole 699A has been removed by a hiatus lasting from 1.0 to 0.6 m.y., which was probably caused by intensification of the deep-reaching ACC. The corresponding interval in Hole 704B, the shallowest core, contains evidence of winnowing. Sharp fluctuations of large amplitude and high frequency in the lithology of the sediments from Hole 704B in the eastern South Atlantic, starting at about 0.75 m.y. and characterizing the whole Brunhes Epoch, record the rapid movement of the northern border of the PFZ over the site. These reflect strong glacial/interglacial alternations in climate. To a lesser extent, lithologic fluctuations in Hole 701C reflect the same phenomenon, whereas in Hole 699A the lithology does not vary as dramatically.
Resumo:
To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.
Resumo:
This work is based on a long time series of data collected in the well-preserved Bay of Calvi (Corsica island, Ligurian Sea, NW Mediterranean) between 1979 and 2011, which include physical characteristics (31 years), chlorophyll a (chl a, 15 years), and inorganic nutrients (13 years). Because samples were collected at relatively high frequencies, which ranged from daily to biweekly during the winter-spring period, it was possible to (1) evidence the key role of two interacting physical variables, i.e. water temperature and wind intensity, on nutrient replenishment and phytoplankton dynamics during the winter-spring period, (2) determine critical values of physical factors that explained interannual variability in the replenishment of surface nutrients and the winter-spring phytoplankton bloom, and (3) identify previously unrecognized characteristics of the planktonic ecosystem. Over the >30 year observation period, the main driver of nutrient replenishment and phytoplankton (chl a) development was the number of wind events (mean daily wind speed >5 m s-1) during the cold-water period (subsurface water <13.5°C). According to winter intensity, there were strong differences in both the duration and intensity of nutrient fertilization and phytoplankton blooms (chl a). The trophic character of the Bay of Calvi changed according to years, and ranged from very oligotrophic (i.e. subtropical regime, characterized by low seasonal variability) to mesotrophic (i.e. temperate regime, with a well-marked increase in nutrient concentrations and chl a during the winter-spring period) during mild and moderate winters, respectively. A third regime occurred during severe winters characterized by specific wind conditions (i.e. high frequency of northeasterly winds), when Mediterranean "high nutrient - low chlorophyll" conditions occurred as a result of enhanced crossshore exchanges and associated offshore export of the nutrient-rich water. There was no long-term trend (e.g. climatic) in either nutrient replenishment or the winter-spring phytoplankton bloom between 1979 and 2011, but both nutrients and chl a reflected interannual and decadal changes in winter intensity.