126 resultados para Vegetation coverage

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied a high-resolution multiproxy data set, including magnetic susceptibility (MS), CaCO3 content, and stable isotopes (d18O and d13C), from the stratigraphic interval covering the uppermost Maastrichtian and the lower Danian, represented by the pelagic limestones of the Scaglia Rossa Formation continuously exposed in the classic sections of the Bottaccione Gorge and the Contessa Highway near Gubbio, Italy. Variations in all the proxy series are periodic and reflect astronomically forced climate changes (i.e., Milankovitch cycles). In particular, the MS proxy reflects variations in the terrigenous dust input in this pelagic, deep-marine environment. We speculate that the dust is mainly eolian in origin and that the availability and transport of dust are influenced by variations in the vegetation cover on the Maastrichtian-Paleocene African or Asian zone, which were respectively located at tropical to subtropical latitudes to the south or far to the east of the western Tethyan Umbria-Marche Basin, and were characterized by monsoonal circulation. The dynamics of monsoonal circulation are known to be strongly dependent on precession-driven and obliquity-driven changes in insolation. We propose that a threshold mechanism in the vegetation coverage may explain eccentricity-related periodicities in the terrigenous eolian dust input. Other mechanisms, both oceanic and terrestrial, that depend on the precession amplitude modulated by eccentricity, can be evoked together with the variation of dust influx in the western Tethys to explain the detected eccentricity periodicity in the d13C record. Our interpretations of the d18O and MS records suggest a warming event ~400 k.y. prior to the Cretaceous-Paleogene (K-Pg) boundary, and a period of climatic and environmental instability in the earliest Danian. Based on these multiproxy phase relationships, we propose an astronomical tuning for these sections; this leads us to an estimate of the timing and duration of several late Maastrichtian and Danian biostratigraphic and magnetostratigraphic events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time series of terrigenous source elements (Al, K, Ti, Zr) from core GeoB4901-8 recovered from the deep-sea fan of the Niger River record variations in riverine sediment discharge over the past 245,000 yr. Although the flux rates of all the elements depend on physical erosion, which is mainly controlled by the extent of vegetation coverage in central Africa, element/Al ratios reflect conditions for chemical weathering in the river basin. Maximum sediment input to the ocean occurs during cold and arid periods, when precipitation intensity and associated freshwater runoff are reduced. High carbonate contents during the same periods indicate that the sediment supply has a positive effect on river-induced marine productivity. In general, variations in the terrestrial signals contain a strong precessional component in tune with changes in low-latitude solar radiation. However, the terrestrial signal lags the insolation signal by several thousand years. K/Al, Ti/Al, and Zr/Al records reveal that African monsoonal precipitation depends on high-latitude forcing. We attribute the shift between insolation cycle and river discharge to the frequently reported nonlinear response of African climate to primary orbital configurations, which may be caused by a complex interaction of the secondary control parameters, such as surface albedo and/or thermohaline circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the syntaxonomy and ecology of debris, scree and alluvium vegetation of the Ammassalik district, Southeast Greenland, on more or less moist soil. The Oxyria digyna- and Chamaenerion latifoliumvegetation types are classified as Saxifrago-Oxyrietum digynae (Böcher 1933 ap. Nordh. 1943) Gjaerevoll 1950 respectively Chamaenerietum latifolii Böcher 1933 in the class Thlaspietea rotundifolii Br.-BI. ap. Br.-BI. et al. 1947. The chionophytic Saxifrago-Oxyrietum digynae and the Chamaenerietum latifolii occurring on river-banks are classified in the alliance Saxifrago stellaris-Oxyrion digynae Gjaerevoll 1950. This alliance belongs to the order Androsacetalia alpinae Br.-BI. ap. Br.-BI. & Jenny 1926, Thlaspietea rotundifolii Br.-BI. ap. Br.-BI. et al. 1947. The following syntaxa are described as new: Saxifrago-Oxyrietum digynae stellarietosum humifusae and typicum with two variants and one variant of the subassociation inops De Molenaar 1976, and the Chamaenerietum latifolii typicum with two variants and salicetosum herbaceae with three variants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.