29 resultados para Variable descent neighborhood

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 µatm-28 °C, 400 µatm-31 °C, 1000 µatm-28 °C and 1000 µatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quercus robur L. (pedunculate oak) and Quercus petraea (Matt.) Liebl. (sessile oak) are two European oak species of great economic and ecological importance. Even though both oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by oaks often fail to regenerate naturally. The regeneration performance of both oak species is assumed to be subject to a variety of variables that interact with one another in complex ways. The novel approach of this research was to study the effect of many ecological variables on the regeneration performance of both oak species together and identify key variables and interactions for different development stages of the oak regeneration on a large scale in the field. For this purpose, overstory and regeneration inventories were conducted in oak dominated forests throughout southern Germany and paired with data on browsing, soil, and light availability. The study was able to verify the assumption that the occurrence of oak regeneration depends on a set of variables and their interactions. Specifically, combinations of site and stand specific variables such as light availability, soil pH and iron content on the one hand, and basal area and species composition of the overstory on the other hand. Also browsing pressure was related to oak abundance. The results also show that the importance of variables and their combinations differs among the development stages of the regeneration. Light availability becomes more important during later development stages, whereas the number of oaks in the overstory is important during early development stages. We conclude that successful natural oak regeneration is more likely to be achieved on sites with lower fertility and requires constantly controlling overstory density. Initially sufficient mature oaks in the overstory should be ensured. In later stages, overstory density should be reduced continuously to meet the increasing light demand of oak seedlings and saplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ data was collected between 2008-2014 in upper ocean. This data set includes the date, local time, coordinate, lifetime value, and variable fluorescence values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental phase relations were used to assess the role of volatiles and crustal level fractional crystallization in the petrogenesis of lavas from Hole 839B in the central Lau Basin. Melting experiments were performed on Sample 135-839B-15R-2, 63-67 cm, at 1 atm, anhydrous, and 2 kbar, H2O-saturated (~6 wt% H2O in the melt) to determine the influence of variable pressure and H2O content on phase appearances, mineral chemistry, and liquid line of descent followed during crystallization. The effects of H2O are to depress the liquidus by ~100°C, and to suppress crystallization of plagioclase and orthopyroxene relative to olivine and high-Ca clinopyroxene. At 1 atm, anhydrous, olivine and plagioclase coexist near the liquidus, whereas orthopyroxene and then clinopyroxene appear with decreasing temperature. Crystallization of 50 wt% produces a residual liquid that is rich in FeO* (10.8 wt%) and poor in Al2O3 (13.6 wt%). At 2 kbar, H2O-saturated, the liquidus phases are olivine and chromian spinel, with high-Ca clinopyroxene appearing after ~10% crystallization. Plagioclase saturation is suppressed until ~20% crystallization has occurred. The residual liquid from 35 wt% crystallization is rich in AI2O3 (17.4 wt%), and poor in MgO (4.82 wt%); it contains moderate FeO* (8.2 wt%), and resembles the low-MgO andesites recovered from Hole 839B. On the basis of these experiments we conclude that the primitive lavas recovered from Hole 839B have experienced crystallization along the Ol + Cpx saturation boundary, under hydrous conditions (an ankaramitic liquid line of descent), and variable amounts of olivine and chromian spinel accumulation. The low-MgO andesites from Hole 839B are the products of hydrous fractional crystallization, at crustal pressures, of a parent magma similar to basaltic andesite Sample 135-839B-15R-2, 63-67 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 µatm), high (660 µatm), or variable pCO2 (oscillating between 400/660 µatm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.