1 resultado para VARIABLE NEIGHBORHOOD RANDOM FIELDS
em Publishing Network for Geoscientific
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (36)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (19)
- Helda - Digital Repository of University of Helsinki (33)
- Indian Institute of Science - Bangalore - Índia (336)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (22)
- Queensland University of Technology - ePrints Archive (286)
- Repositorio Academico Digital UANL (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Université de Montréal (2)
- Université de Montréal, Canada (7)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (1)
Resumo:
The classification of airborne lidar data is a relevant task in different disciplines. The information about the geometry and the full waveform can be used in order to classify the 3D point cloud. In Wadden Sea areas the classification of lidar data is of main interest for the scientific monitoring of coastal morphology and habitats, but it becomes a challenging task due to flat areas with hardly any discriminative objects. For the classification we combine a Conditional Random Fields framework with a Random Forests approach. By classifying in this way, we benefit from the consideration of context on the one hand and from the opportunity to utilise a high number of classification features on the other hand. We investigate the relevance of different features for the lidar points in coastal areas as well as for the interaction of neighbouring points.