61 resultados para Uniformity of distribution
em Publishing Network for Geoscientific
Resumo:
During Cruise 49 of R/V Dmitry Mendeleev in the Kara Sea (August-September, 1993) chemical-bitumenological studies of bottom sediments were carried out. Hydrocarbons were analyzed by gas-liquid chromatography. It was found on the basis of distribution of n-alkanes and isoprenoids (pristan and phytan) that organic matter is mainly terrigenous consisting of higher plant remains.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.
Resumo:
Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.
Resumo:
Results of multiyear investigation of distribution and composition of suspended matter in waters off the northwest coast of Africa are presented. Large-scale circulation, upwelling, river runoff, and aeolian deposition affect distribution and evolution of biochemical composition of particulate matter. Concentrations of organic carbon, nitrogen, chlorophyll, phytoplankton and trace metals in the particulate matter are determined. Ratios of these components exhibit seasonal variations.
Resumo:
Vertical distribution of common zooplankton species is examined on the base of two series of layer-by-layer net catches down to depth of 3400 m. Differences between the series are significant for most species only near the surface, whereas in deeper layers character of distribution remains the same. Great depths in the Sea of Japan are populated most actively by species performing intensive daily migrations, and less actively by species continuously confined to a definite depth range. Different character of nutrition of the animals apparently determines extent of utilization of deep layers, which are usual for the species.
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.
Resumo:
The aerosol climatology at the coastal Antarctic Neumayer Station (NM) was investigated based on continuous, 25-yr long observations of biogenic sulphur components (methanesulfonate and non-sea salt sulphate), sea salt and nitrate. Although significant long-term trends could only be detected for nitrate (-3.6 ± 2.5% per year between 1983 and 1993 and +4.0 ± 3.2% per year from 1993-2007), non-harmonic periodicities between 2 and 5 yr were typical for all species. Dedicated time series analyses revealed that relations to sea ice extent and various circulation indices are weak at best or not significant. In particular, no consistent link between sea ice extent and sea salt loadings was evident suggesting only a rather local relevance of the NM sea salt record. Nevertheless, a higher Southern Annular Mode index tended to entail a lower biogenic sulphur signal. In examining the spatial uniformity of the NM findings we contrasted them to respective 17 yr records from the coastal Dumont d'Urville Station. We found similar long-term trends for nitrate, indicating an Antarctic-wide but not identifiable atmospheric signal, although any significant impact of solar activity or pollution could be ruled out. No inter-site variability on the multiannual scale was evident for the other ionic compounds.
Resumo:
A study of distribution of live individuals of benthic foraminifera in sediments of the Sea of Okhotsk and of the Northwestern Basin of the Pacific Ocean shows that they can be present in sediments up to depth of 30 cm and probably can live there for long periods, sometimes forming high concentrations. Living individuals in the subsurface layer often account for more than 50% of total biomass, which varies from 1 to 21 g/m**2 in different morphological structures. The largest biomass values are attained in underwater rises embedded in relatively warm, oxygen-saturated Pacific waters. Minimum total biomass concentrations occur in deep-water depressions where stagnation phenomena are observed. Foraminifera biomass everywhere decreases gradually with increasing depth from the surface of sediments regardless of relief, depth, and nature of sediments.
Resumo:
Features of sedimentation of carbonate mineral associations in the northeastern shelf of Sakhalin and other regions of the Sea of Okhotsk are considered. Special attention is paid to correlation between carbonate neoformations and abnormal fluxes of methane. In bottom sediments with high contents of methane carbonate-sulfide associations occur, their generation has been influenced by gas (mostly methane) fields. Joint consideration of distribution of gas and geochemical fields and mineral associations in the Sea of Okhotsk allows to understand better a mechanism of mineral generation in bottom sediments, possible formation of ore accumulations, and to use them as indicators for prognosis of mineral resources.
Resumo:
This work was based on a study of the upper layer of recent carbonate bottom sediments of the Atlantic Ocean. Biogenic carbonate of recent sediments is represented by metastable and stable minerals. In the ocean metastable phases can exist indefinitely long, but the structure of polymorphism determines inevitability of transformation of metastable phases into stable ones. This transformation occurs in the solid phase. In the absence of a critical point between the two phases of the transition process is not available for study by microscopic methods. It is estimated indirectly by studying the nature and extent of changes in mineral and chemical compositions. With aging of sediments their mineral composition alters in direction of increasing contents of resistant minerals. Fine grained sediments and fractions are subject to more intensive effects of early diagenesis processes, rather than coarse ones; this is reflected in their mineral composition. Regularities of distribution of carbonate minerals in size fractions consistent with the direction of polymorphic transformations in calcium carbonate. Such transformations can occur in a particular dimension of grains. Concrete grain size depends on environmental conditions. This situation explains presence of metastable biogenic carbonates at different depths of the ocean and suggests presence of diagenetic calcite in sediments occurring below expected for each case depth of the transition.
Major oxides, trace elements and rare earth elements of selected basalt samples at DSDP Hole 83-504B
Resumo:
DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).
Resumo:
Samples of basalt collected on Leg 65 near 22°N on the East Pacific Rise all display the depleted light rare-earth pattern of "normal" oceanic crust. Consequently the La/Ta ratio is close to 18, as opposed to the value of 9 associated with the flat or enriched patterns found along parts of the Mid-Atlantic Ridge and the Emperor Seamount chain. The Leg 65 samples are chemically similar to those from the CYAMEX area at 21 °N and to the Leg 54 samples from 9°N, suggesting homogeneity of the upper mantle under the northern part of the East Pacific Rise over a minimum distance of about 1500 km. The geochemistry of the rocks and their field relationships with respect to depth and distance from the axis of the Rise show no pattern of distribution linked to the degree of fractional crystallization and thus cast doubt on any possible model involving large, long-lived magma chambers at the axis of the Rise.
Resumo:
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) - despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.