25 resultados para Undisciplined in first cycle
em Publishing Network for Geoscientific
Resumo:
An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).
Resumo:
The Aleutian abyssal plain is a fossil abyssal plain of Paleogene age in the western Gulf of Alaska. The plain is a large, southward-thinning turbidite apron now cut off from sediment sources by the Aleutian Trench. Turbidite sedimentation ceased about 30 m.y. ago, and the apron is now buried under a thick blanket of pelagic deposits. Turbidites of the plain were recovered at site 183 of the Deep Sea Drilling Project on the northern edge of the apron. The heavy-mineral fraction of sand-sized samples is mostly amphibole and epidote with minor pyroxene, garnet, and sphene. The light-mineral fraction is mostly quartzose debris and feldspars. Subordinate lithic fragments consist of roughly equal amounts of metamorphic, plutonic, sedimentary, and volcanic grains. The sand compositions are arkoses in many sandstone classifications, although if fine silt is included with clay as matrix, the sand deposits are feldspathic or lithofeldspathic graywacke. The sands are apparently first-cycle products of deep dissection into a plutonic terrane, and they contrast sharply with arc-derived volcanic sandstones of similar age common on the adjacent North American continental margin. The turbidite sands are stratigraphically remarkably constant in composition, which indicates derivation from virtually the same terrane through a time span approaching 20 m.y. Comparison of Aleutian plain data with the compositions of coeval sedimentary rocks from the northeast Pacific margin shows that the Kodiak shelf area includes possible proximal equivalents of the more distal turbidites. Derivation from the volcaniclastic Mesozoic flysch of the Shumagin-Kodiak shelf is unlikely; more probably the sediments were derived from primary plutonic sources. The turbidites also resemble deposits in the Chugach Mountains and the younger turbidites of the Alaskan abyssal plain and could conceivably have been derived from the coast ranges of southeastern Alaska or western British Columbia. The Aleutian plain sediment most likely was not derived from as far south as the Oregon-Washington continental margin, where coeval sedimentary deposits are dominantly volcaniclastic.
Resumo:
The variability in microbial communities (abundance and biomass), bacterial production and ectoaminopeptidase activity, particulate and dissolved organic carbon (POC, DOC), and particulate and dissolved lipids was examined in spring 1995 in the northwestern Mediterranean, where a transition from the end of a bloom to pre-oligotrophic conditions was observed. Four time series of 36 h each and 4 h sampling intervals were performed at 5 m and at the chlorophyll maximum (30 m) between 11 and 31 May. Simultaneous measurements of pigments, abundance of hetero- and autotrophic flagellates, bacteria and POC enabled the estimation of living POC (defined as autotrophic-C plus heterotrophic-C biomass), and thus the detrital organic carbon. During the first 2 time series (11 to 15 May), the bacterial-C biomass was higher than the autotrophic-C biomass at 5 m (ratio 1.4 and 1.7), whereas the opposite trend was observed in the chlorophyll peak (ratio 0.7 for the first cycle). However, at the end of May, autotrophic-C biomass was equivalent to bacterial-C biomass at both depths studied. The detrital pool remained a more or less constant fraction of the POC (52, 53 and 47% on 11-12 May, 14-15 May and 30-31 May) at the chlorophyll peak, whereas it decreased significantly with time (62 to 53%) at 5 m. Relationships between bacterial activities and evolution of available resources were not systematically evidenced from our 36 h diel cycle data. Nevertheless, at the monthly scale, comparison of bacterial carbon demand (BCD) to potential carbon resources (detrital POC and DOC) showed that bacteria fed differently on the various pools. From ectoaminopeptidase turnover rates and detrital POC, the potential hydrolysis rate of detritus was calculated. Depending on the choice of conversion factors for bacterial production and estimates of hydrolysis turnover rates, it was shown that bacterial hydrolysis of detritus could be one of the DOC accumulation sources. We observed that the percentage of BCD supplied by detrital POC hydrolysis increased in the surface and decreased in the chlorophyll peak. An index of lipid degradation in POC, the lipolysis index, increased during the month at 5 m, also indicating a higher hydrolysis of POC. The opposite trend was observed in the chlorophyll maximum layer. The selective decrease in dissolved lipids in DOC in the chlorophyll maximum layer, particularly free fatty acids, also suggests that bacteria utilized increased fractions of carbon sources from the DOC. We concluded that partitioning between DOC and detritus as resources for bacteria can change during the rapid transition period from mesotrophy to oligotrophy in the northwestern Mediterranean.
Resumo:
We identified ikaite crystals (CaCO3 · 6H2O) and examined their shape and size distribution in first-year Arctic pack ice, overlying snow and slush layers during the spring melt onset north of Svalbard. Additional measurements of total alkalinity (TA) were made for melted snow and sea-ice samples. Ikaite crystals were mainly found in the bottom of the snowpack, in slush and the surface layers of the sea ice where the temperature was generally lower and salinity higher than in the ice below. Image analysis showed that ikaite crystals were characterized by a roughly elliptical shape and a maximum caliper diameter of 201.0±115.9 µm (n = 918). Since the ice-melting season had already started, ikaite crystals may already have begun to dissolve, which might explain the lack of a relationship between ikaite crystal size and sea-ice parameters (temperature, salinity, and thickness of snow and ice). Comparisons of salinity and TA profiles for melted ice samples suggest that the precipitation/dissolution of ikaite crystals occurred at the top of the sea ice and the bottom of the snowpack during ice formation/melting processes.
Resumo:
Detrital K-feldspars and muscovites from Ocean Drilling Program Leg 116 cores that have depositional ages from 0 to 18 Ma have been dated by the 40Ar/39Ar technique. Four to thirteen individual K-feldspars have been dated from seven stratigraphic levels, each of which have a very large range, up to 1660 Ma. At each level investigated, at least one K-feldspar yielded an age minimum which is, within uncertainty, identical to the age of deposition. One to twelve single muscovite crystals from each of six levels have also been studied. The range of muscovite ages is less than that of the K-feldspars and, with one exception, reveal only a 20-Ma spread in ages. As with the K-feldspars, each level investigated contains muscovites with mineral ages essentially identical to depositional ages. These results indicate that a significant portion of the material in the Bengal Fan is first-cycle detritus derived from the Himalayas. Therefore, the significant proportion of sediment deposited in the distal fan in the early to mid Miocene can be ascribed to a significant pulse of uplift and erosion in the collision zone. Moreover, these data indicate that during the entire Neogene, some portion of the Himalayan orogen was experiencing rapid erosion (<= uplift). The lack of granulite facies rocks in the eastern Himalayas and Tibetan Plateau suggests that very rapid uplift must have been distributed in brief pulses in different places in the mountain belt. We suggest that the great majority of the crystals with young apparent ages have been derived from the southern slope of the Himalayas, predominantly from near the main central thrust zone. These data provide further evidence against tectonic models in which the Himalayas and Tibetan plateaus are uplifted either uniformly during the past 40 m.y. or mostly within the last 2 to 5 m.y.
Resumo:
The Arctic sea-ice environment has been undergoing dramatic changes in the past decades; to which extent this will affect the deposition, fate, and effects of chemical contaminants remains virtually unknown. Here, we report the first study on the distribution and transport of mercury (Hg) across the ocean-sea-ice-atmosphere interface in the Southern Beaufort Sea of the Arctic Ocean. Despite being sampled at different sites under various atmospheric and snow cover conditions, Hg concentrations in first-year ice cores were generally low and varied within a remarkably narrow range (0.5-4 ng/L), with the highest concentration always in the surface granular ice layer which is characterized by enriched particle and brine pocket concentration. Atmospheric Hg depletion events appeared not to be an important factor in determining Hg concentrations in sea ice except for frost flowers and in the melt season when snowpack Hg leaches into the sea ice. The multiyear ice core showed a unique cyclic feature in the Hg profile with multiple peaks potentially corresponding to each ice growing/melting season. The highest Hg concentrations (up to 70 ng/L) were found in sea-ice brine and decrease as the melt season progresses. As brine is the primary habitat for microbial communities responsible for sustaining the food web in the Arctic Ocean, the high and seasonally changing Hg concentrations in brine and its potential transformation may have a major impact on Hg uptake in Arctic marine ecosystems under a changing climate.
Resumo:
Thirty sediment samples from Tortonian to Pleistocene age of five ODP locations (Holes 650A, 651A, and 652A, and Sites 654 and 655) in the Marsili Basin, Vavilov Basin, and Sardinia Margin (Tyrrhenian Sea) were studied by organic geochemical methods including total organic carbon determination, Rock-Eval pyrolysis, bitumen extraction, pyrolysis-gas chromatography, and organic petrography. Six organic facies, including open ocean anoxia with variable terrestrial input, oxic open ocean, oxic tidal flat, mildly oxic lagoon, and anoxic lacustrine algal-bacterial mat environments, have been recognized in these sediments. The sediments below 500 m in Sardinia Margin are mature for significant hydrocarbon generation. Possible mature source-rock (Type I and IIB/III kerogen) and migrated bitumen occur in the deeper part of the section in Vavilov Basin and Sardinia Margin sediments. Sporadic sapropel formation observed in the studied Pliocene-Pleistocene sediment section is probably controlled by organic productivity due to nutrient supply by the rivers and terrestrial input associated with open ocean anoxia or anoxia caused by the material balance between rate of organic matter supplied by turbidites and organic matter consumption. Pliocene and Pleistocene sapropels are mostly immature and lie within Type II-III (precisely as IIA-IIB and IIB source rocks) kerogen maturation path.
Resumo:
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81°N and 83°N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms.
Resumo:
Sediments in Arctic sea ice are important for erosion and redistribution and consequently a factor for the sediment budget of the Arctic Ocean. The processes leading to the incorporation of sediments into the ice are not understood in detail yet. In the present study, experiments on the incorporation of sediments were therefore conducted in ice tanks of The Hamburg Ship Model Basin (HSVA) in winter 1996/1997, These experiments showed that on average 75 % of the artificial sea-ice sediments were located in the brine-channel system. The sediments were scavenged from the water column by frazil ice. Sediments functioning as a nucleus for the formation of frazil ice were less important for the incorporation. Filtration in grease ice during relatively calm hydrodynamic conditions was probably an effective process to enrich sediments in the ice. Wave fields did not play an important role for the incorporation of sediments into the artificial sea ice. During the expedition TRANSDRIFT III (TDIII, October 1995), different types of natural, newly-formed sea ice (grease ice, nilas and young ice) were sampled in the inner Laptev Sea at the time of freeze-up. The incorporation of sediments took place during calm meteorological conditions then. The characteristics of the clay mineral assemblages of these sedirnents served as references for sea-ice sediments which were sampled from first-year drift ice in the outer Laptev Sea and the adjacent Arctic Ocean during the POLARSTERN expedition ARK-XI/1 (July-September 1995). Based on the clay mineral assemblages, probable incorporation areas for the sedirnents in first-year drift ice could be statistically reconstructed in the inner Laptev Sea (eastern, central, and Western Laptev Sea) as well as in adjacent regions. Comparing the amounts of particulate organic carbon (POC) in sea-ice sediments and in surface sediments from the shelves of potential incorporation areas often reveals higher values in sea-ice sediments (TDIII: 3.6 %DM; ARK-XI/1: 2.3 %DM). This enrichment of POC is probably due to the incorporation process into the sea ice, as could be deducted from maceral analysis and Rock-Eval pyrolysis. Both methods were applied in the present study to particulate organic material (POM) from sea-ice sediments for the first time. It was shown that the POM of the sea-ice sediments from the Laptev Sea and the adjacent Arctic Ocean was dominated by reworked, strongly fragmented, allochthonous (terrigenous) material. This terrigenous component accounted for more than 75 % of all counted macerals. The autochthonous (marine) component was also strongly fragmented, and higher in the sediments from newly-formed sea ice (24 % of all counted macerals) as compared to first-year drift ice (17 % of all counted macerals). Average hydroge indices confirmed this pattern and were in the transition zone between kerogen types II and III (TDIII: 275 mg KW/g POC; ARK-XI/1: 200 mg KW/g POC). The sediment loads quantified in natural sea ice (TDIII: 33.6 mg/l, ARK-XI/1: 49.0 mg/l) indicated that sea-ice sediments are an important factor for the sediment budget in the Laptev Sea. In particular during the incorporation phase in autumn and early winter, about 12 % of the sediment load imported annually by rivers into the Laptev Sea can be incorporated into sea ice and redistributed during calm meteorological conditions. Single entrainment events can incorporate about 35 % of the river input into the sea ice (ca. 9 x 10**6 t) and export it via the Transpolar Drift from the Eurasian shelf to the Fram Strait.