2 resultados para Ultrasonic measurement

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution, we experimentally test the effects of azimuth and tilt angle on the acoustic reflectivity of a liquid- anisotropic solid interface. For this study, we are using a large source transducer, and acquired data for samples with different tilt angles. We use Phenolic CE material, which is known to have orthorhombic symmetry. Our results show that changes of the tilt angle produce important variations on the reflectivity that are larger as the tilt increases. The most remarkable feature is the change of the critical angle with the azimuth, which shows a larger spread for larger tilts. The spectral components of the acquired waveforms also show characteristic features linked to the location of the critical angle, we particularly observed a drop in the peak frequency. These observations suggest that care must be taken about the interpretation and inversion of observed incidence and azimuth dependent seismic reflectivities and critical angles in obtaining information on a formation's anisotropy. Zip archive contains four segy files: - LAB_TI00, is not tilted sample in contact with water, - LAB_TI30, is 30degrees tilted sample in contact with water, - LAB_TI45, is 45 degrees tilted sample in contact with water, - LAB_TI90, is 90 degrees tilted sample in contact with water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bulk and grain densities, porosity, water content, and ultrasonic compressional- and shear-wave velocities of 25 basalt samples from DSDP Holes 597B and 597C were measured. The velocities were measured at in situ pore and confining pressures. The bulk densities of the samples vary between 2.690 and 3.050 g/cm**3. Porosities of selected samples vary between 2.4 and 9.3%. The grain densities vary between 2.993 and 3.117 g/cm3, a range that suggests that bulk density differences are due primarily to variations in porosity. Compressional-wave velocities range from 5.70 to 6.81 km/s, and shear-wave velocities range from 1.66 to 3.84 km/s. The variation in compressional velocity appears to be due primarily to variations in grain size and the associated greater density of grain-boundary cracks for samples with a smaller average grain size. On the basis of these results we would expect compressional and shear velocities to increase with increasing depth in the shallow crust, primarily as the result of the effects of confining pressure on crack density.