46 resultados para Type System

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling was conducted from March 24 to August 5 2010, in the fjord branch Kapisigdlit located in the inner part of the Godthåbsfjord system, West Greenland. The vessel "Lille Masik" was used during all cruises except on June 17-18 where sampling was done from RV Dana (National Institute for Aquatic Resources, Denmark). A total of 15 cruises (of 1-2 days duration) 7-10 days apart was carried out along a transect composed of 6 stations (St.), spanning the length of the 26 km long fjord branch. St. 1 was located at the mouth of the fjord branch and St. 6 was located at the end of the fjord branch, in the middle of a shallower inner creek . St. 1-4 was covering deeper parts of the fjord, and St. 5 was located on the slope leading up to the shallow inner creek. Mesozooplankton was sampled by vertical net tows using a Hydrobios Multinet (type Mini) equipped with a flow meter and 50 µm mesh nets or a WP-2 net 50 µm mesh size equipped with a non-filtering cod-end. Sampling was conducted at various times of day at the different stations. The nets were hauled with a speed of 0.2-0.3 m s**-1 from 100, 75 and 50 m depth to the surface at St. 2 + 4, 5 and 6, respectively. The content was immediately preserved in buffered formalin (4% final concentration). All samples were analyzed in the Plankton sorting and identification center in Szczecin (www.nmfri.gdynia.pl). Samples containing high numbers of zooplankton were split into subsamples. All copepods and other zooplankton were identified down to lowest possible taxonomic level (approx. 400 per sample), length measured and counted. Copepods were sorted into development stages (nauplii stage 1 - copepodite stage 6) using morphological features and sizes, and up to 10 individuals of each stage was length measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in January/February 2011 were determined for 38 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM17/3 cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 38 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ichthyoplankton density (fish eggs and larvae) and bulk zooplankton biomass in October 2011 were determined for 22 stations in the northern Benguela upwelling system, based on oblique Multinet hauls during the FS Maria S. Merian MSM19/1b cruise. A HYDROBIOS Multinet, type Midi (0.25 m**2 mouth area) was equipped with five nets of 500 µm-mesh size, temperature and oxygen probes, and an inner and outer flow meter to monitor the net's trajectory (for volume filtered calculations) as well as net clogging. The Multinet was handled over the side, towed horizontally at 2 knots. Winch speed when fearing was 0.5 or 0.3 m/s, heaving velocity 0.2 - 0.3 m/s. The Multinet was towed obliquely at 22 stations sampling the upper 200 m of the water column, which were divided into five different depth strata after inspection of temperature and oxygen concentration depth profiles. Ichthyoplankton densities and zooplankton biomass were calculated for each depth stratum (=single net) from total abundance and the volume of water filtered [individuals per m**3 and g wet weight per m**3, respectively]. In addition, densities and biomass were integrated over the area for each station [individuals per m**2], as sum of calculations for each net: Sum ([individuals per m**3]*Delta (depth bot[m]-depth top [m]).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.