19 resultados para Two stages
em Publishing Network for Geoscientific
Resumo:
Geochemical behavior of Rb-Sr and K-Ar systems in Upper Vendian clayey rocks of the Russian Platform is under consideredation. The use of additional data on grain size fractions of sedimentary rocks recovered from boreholes drilled in the Gavrilov Yam area made it possible to confirm the previous conclusion on two stages of epigenetic matter transformation (approximately 600 and 400 Ma ago). Distortions are related to transformation of sediments due to interaction in the water-rock system. Interaction degree was more intense in the upper part of the sedimentary section relative to its lower strata. These conclusions are substantiated by materials from boreholes that characterize different types of Vendian sections and different tectonic zones.
Resumo:
The study of the main characteristics of ash layers in Leg 57 cores shows that they are suitable for an analysis of the effect on eruptive activity of their distribution. We found (1) sediment recovery good and ash layers numerous; (2) sedimentary environment generally free from terrigenous clastic material; (3) reworking limited; (4) volcanic glass very acidic, ranging from rhyolitic to rhyodacitic composition; and (5) alteration and diagenesis negligible above the lower Miocene. The curves of explosive volcanic activity in Holes 438, 439, and 440 display two stages of high activity: an early one around 16 m.y. and a late one starting 5 m.y. B.P., both stages being separated by an upper Miocene quiescence. Detail in these results is limited by the chemical composition of the glass and accounts only for trends in explosive acid volcanism. Nevertheless, results are roughly in agreement with other data from the Northwest Pacific, although some discrepancies in the correlation of intensity of the episodes occur. The data from Leg 57 support the hypothesis of synchronous pulses in explosive volcanism.
Resumo:
This paper presents results of studies of rocks sampled during Cruise 19 of R/V Akademik Mstislav Keldysh with the Mir submersibles in the Atlantic Ocean (slopes of the King's Trough and Palmer Ridge). Based on these materials and published data two stages of magmatism and evolution in the region are distinguished: 1) formation of a mid-ocean ridge in the rift zone (68-32 Ma); 2) development of intraplate volcanism during movement of the plate over a "hot spot" (32-0 Ma).
Resumo:
Oxidation rate of 35S-thiosulfate under simulated natural conditions and abundance of thiosulfate-oxidizing bacteria in a redox zone of the Black Sea are lower during winter and spring than in summer, especially in halistatic regions. Oxidation of thiosulfate under natural conditions is performed chiefly by lithotropic thionic bacteria, whose activity is limited by low temperatures. Adding thiosulfate and readily available organic matter to water samples from the redox zone and raising temperature of water stimulated activity of heterotrophic thiosulfate-oxidizing bacteria. Oxidation of elemental sulfur tagged with 35S apparently invovled two stages: abiotic oxidation of thiosulfate and subsequent bacterial oxidation of thiosulfate to sulfate.
Resumo:
As soon as they are emplaced on the sea floor, oceanic basalts go through a low-temperature alteration process which produces black halos concentrical with exposed surfaces and cracks, whereas the grey internal parts of the basaltic pieces apparently remain unaltered. This paper reports for the first time the occurrence of authigenic siderite and ankerite in oceanic basalts and more particularly in the grey internal parts of the latter. Small (8-50 µm) crystals of zoned siderite and ankerite have been observed in ten vesicles of two samples recovered from DSDP Holes 506G and 507B drilled south of the Galápagos Spreading Center (GSC). These Fe-carbonates show a large range of chemical composition (FeCO3 = 47-88%; CaCO3 = 5-40%; MgCO3 = 1-20%; MnCO3 = 0-11%). Most of them are Ca-richer than siderite reported in the literature. The chemical composition of the carbonate clearly reflects the fluctuation of the fluid chemical composition during crystallization. Mn and at least part of the Fe are thought to be hydrothermal in origin, whereas Mg and probably Ca were provided by seawater. It is proposed that siderite and ankerite formed at relatively low temperature (<85°C) and is metastable. The alteration of the GSC basalts seems to have proceeded in two stages: during the first, reducing stage, pyrite precipitated from hydrothermal fluids. A little further in the rock, siderite precipitated from the fluid which had already been modified by the formation of pyrite, and thus in a microenvironment where particular conditions prevailed (high P_CO2, increasing p_S**2- or increasing pH or increasing or decreasing pe). During the second, oxidizing, stage of alteration, a seawater-dominated fluid allowed crystallization of mixtures of Fe-rich smectites and micas, and Fe-hydroxides forming the black halos in the external portion of the basalt pieces and locally oxidizing pyrite and siderite in their innermost part. It is shown in this paper that, even at its earliest stage, and at low temperature, alteration of the upper oceanic crust (lavas) involves fluids enriched in Fe and Mn, interpreted to be of hydrothermal origin.
Resumo:
The distribution of paragenetic assemblages of trace and rare elements, as revealed by factor analysis (R-mode, Q-mode), the ratios of elements to Zr and the interpretation of these data in the context of the known mineralogy, lithology, and geology of the region, provide the bases for the outline of the geochemical history of sedimentation in the study area that forms the subject of this chapter. Two stages may be discerned. 1. Late-Middle Jurassic-Early Cretaceous (160-106? Ma). The sediments that accumulated in relatively shallow water (shelf) were predominantly clay, with dispersed sapropelic organic matter, plant fragments, pyrite, admixtures of acid-medium volcanic glass, and epigenetic crystals of gypsum. The bottom water layers of the basin are notably stagnant. The sediments are characterized by higher amounts of V, Zn, Cu, Cr, Rb, and Be associated with organic matter. Lower Cretaceous sediments, separated from those of the Upper Jurassic by a hiatus, accumulated in a deepened and enlarging basin. These Lower Cretaceous deposits are chemically similar to those of the Upper Jurassic, but contain diagenetic concentrations of Zn, Ni, and La. 2. Early-middle Albian (Unit 5)-middle Maestrichtian (1067-66.6Ma). The prevailing regime was that of an open ocean basin that tended to expand and deepen. During the second half of the early-middle Albian, the biogenic components Ba, Sr, and CaCO3 accumulated. By the end of this interval, Ti/Zr values had increased. In conjunction data on mineral composition, they testify to an outburst of basaltoid volcanism related to tectonic activity before an erosional hiatus (late Albian-Cenomanian). At the end of the Cenomanian-Turonian, residual deposits of predominantly clay sediments with relatively high amounts of Ti and Zr and associated rare alkalis (Li, Rb) accumulated. Clay sediments deposited during the Coniacian-Santonian were characterized by higher concentrations of Ti, Zr, Li, and Rb, by diagenetic carbonate phases of Ni, Zn, and La, and by sulphides and Fe-oxides with an admixture of Ni and Co. The latter half of the interval saw the deposition of fine basaltoid volcanoclastic material, diagenetically altered by zeolitization and carbonatization and enriched with Se, Pb, Ti, Sr, Ba, Y, and Yb. Sediments with a similar chemistry accumulated in the Campanian-middle Maestrichtian. Strong current activity preceding a global hiatus at the Mesozoic/Cenozoic boundary is reflected in both lower sedimentation rates and the presence of higher residual concentrations of Ti, Zr, Ba, Sr, and other elements studied in this chapter.
Resumo:
The geological history of Filchnerfjella and surrounding areas (2°E to 8°E) in central Dronning Maud Land, East Antarctica, is constructed from metamorphic and igneous petrology, and structural investigations. The geology of Filchner-fjella consists mainly of metamorphic rocks accompanied by intrusive rocks. Two stages of metamorphism can be recognized in this area. The earlier stage metamorphism is defined as a porphyroblast stage (garnet, hornblende, and sillimanite stable), and the later one is recognized as a symplectic stage (orthopyroxene and cordieritestable). Taking metamorphic textures and geothermobarometries into account, the rocks experienced an early high-P/medium-T followed by a low-P and high-T stage. Partial melting took place during the low-P/high-T stage, because probable melt of leucocratic gneiss contains cordierite. The field relationships and petrography of the syenite at Filchnerfjella are similar to those of post-tectonic plutons from central Dronning Maud Land, and most of the post-tectonic intrusive rocks have within-plate geochemical features. The structural history in Filchnerfjella and surrounding areas can be divided into the Pan-African stage and the Meso to Cenozoic stage that relates to the break-up of Gondwana.
Resumo:
Secondary minerals filling veins and vesicles in volcanic basement at Deep Sea Drilling Project Sites 458 and 459 indicate that there were two stages of alteration at each site: an early oxidative, probably hydrothermal, stage and a later, low-temperature, less oxidative stage, probably contemporaneous with faulting in the tectonically active Mariana forearc region. The initial stage is most evident in Hole 459B, where low-Al, high Fe smectites and iron hydroxides formed in vesicles in pillow basalts and low-Al palygorskite formed in fractures. Iron hydroxides and celadonite formed in massive basalts next to quartz-oligoclase micrographic intergrowths. Palygorskite was found in only one sample near the top of basement in Hole 458, but it too is associated with iron hydroxides. Palygorskite has previously been reported only in marine sediments in DSDP and other occurrences. It evidently formed here as a precipitate from fluids in which Si, Mg, Fe, and even some Al were concentrated. Experimental data suggest that the solutions probably had high pH and somewhat elevated temperatures. The compositions of associated smectites resemble those in hydrothermal sediments and in basalts at the Galapagos mounds geothermal field. The second stage of alteration was large-scale replacement of basalt by dioctahedral, trioctahedral, or mixed-layer clays and phillipsite along zones of intense fracturing, especially near the bottom of Holes 458 and 459B. The basalts are commonly slickensided, and there are recemented microfault offsets in overlying sediments. Native copper occurs in one core of Hole 458, but associated smectites are dominantly dioctahedral, unlike Hole 459B, where they are mainly trioctahedral, indicating nonoxidative alteration. The alteration in both holes is more intense than at most DSDP ocean crust sites and may have been augmented by water derived from subducting ocean crust beneath the fore-arc region.
Resumo:
Structural-petrologic and isotopic-geochronologic data on magmatic, metamorphic, and metasomatic rocks from the Chernorud zone were used to reproduce the multistage history of their exhumation to upper crustal levels. The process is subdivided into four discrete stages, which corresponded to metamorphism to the granulite facies (500-490 Ma), metamorphism to the amphibolite facies (470-460 Ma), metamorphism to at least the epidote-amphibolite facies (440-430 Ma), and postmetamorphic events (410-400 Ma). The earliest two stages likely corresponded to the tectonic stacking of the backarc basin in response to the collision of the Siberian continent with the Eravninskaya island arc or the Barguzin microcontinent, a process that ended with the extensive generation of synmetamorphic granites. During the third and fourth stages, the granulites of the Chernorud nappe were successively exposed during intense tectonic motions along large deformation zones (Primorskii fault, collision lineament, and Orso Complex). The comparison of the histories of active thermal events for Early Caledonian folded structures in the Central Asian Foldbelt indicates that active thermal events of equal duration are reconstructed for the following five widely spiced accretion-collision structures: the Chernorud granulite zone in the Ol'khon territory, the Slyudyanka crystalline complex in the southwestern Baikal area, the western Sangilen territory in southeastern Tuva, Derbinskii terrane in the Eastern Sayan, and the Bayankhongor ophiolite zone in central Mongolia. The dates obtained by various isotopic techniques are generally consistent with the four discrete stages identified in the Chernorud nappe, whereas the dates corresponding to the island-arc evolutionary stage were obtained only for the western Sangilen and Bayankhongor ophiolite zone.
Resumo:
Electron microprobe (EMP) dating on monazite in granulite- facies rocks from Forefinger Point, East Antarctica, yielded dominant ages of 500 Ma on matrix monazites.They are associated with secondary cordierite, biotite and sapphirine, formed during nearly isothermal decompression after the high P-T assemblages involving garnet, orthopyroxene and sillimanite. Older ages around 750-1000 Ma are detected in monazite cores and in monazite inclusions in garnet porphyroblast. Combining the available age data and the reaction textures, it becomes evident that the Forefinger Point granulites have been overprinted by a granulite-facies decompressional event of Pan-African age. Moreover, EMP monazite dating imply that the Forefinger Point granulites have experienced at least two stages of metamorphic evolution.
Resumo:
The relative importance of small forms of copepods has been historically underestimated by the traditional use of 200-300-µm mesh nets. This work quantified the distribution and abundance of copepods, considering two size fractions (<300 µm and >300 µm), in superficial waters (9 m deep) of the Drake Passage and contributed to the knowledge of their interannual fluctuations among three summers. Four types of nauplii and eleven species of copepods at copepodite and adult stages were identified, with abundance values of up to 13 ind/L and 28,300 µg C/m**3. The <300-µm fraction, composed of Oithona similis, small cyclopoids and nauplii, dominated the copepod communities in the 3 years; it accounted for more than 77% of the total number and for between 40 and 63% of the total biomass. Changes in density and biomass values among the three cruises differed according to copepod size fraction and water mass; the >300-µm fraction showed no changes among the 3 years, both in Antarctic (density and biomass) and in Subantarctic waters (density), whereas the <300-µm fraction showed higher (density and biomass) values in 2001 both in Subantarctic and in Antarctic waters. Sea surface temperature and its anomaly accounted for the largest proportion of variability in copepod density and biomass, particularly for the <300-µm fraction.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite from eolian dust, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (kARM/k and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic d18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic d18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced detrital/eolian hematite input.
Resumo:
The response of Emiliania huxleyi (Lohmann), Calcidiscus leptoporus (Murray and Blackman), and Syracosphaera pulchra (Lohmann) to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. For the first time, we reported on the response of the non-calcifying (haploid) life stage of these three species. Growth rate, cell size, particulate inorganic (PIC) and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 ppm) and their organic and inorganic carbon production calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2 but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while it increased in E. huxleyi. Particulate organic carbon production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophores species, the haploid stage being more sensitive. This must be taken into account when predicting the fate of coccolithophores in the future ocean.
Resumo:
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.