2 resultados para Turning point

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30 X 8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatiotemporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grainsize fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early tomid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is based on Cenomanian sediments of Ocean Drilling Program (ODP) Sites 1258 and 1260 from Demerara Rise (Leg 207, western tropical Atlantic, off Suriname, ~1000 and ~500 m paleo-water depth, respectively). Studied sediments consist of laminated black shales with TOC values between 3 and 18% and include the Mid Cenomanian Event (MCE), a positive carbon isotope excursion predating the well-known Oceanic Anoxic Event 2 (OAE 2). Benthic foraminiferal assemblages of the continuously eutrophic environment at Demerara Rise are characterized by low diversities (<= 9 species per sample) and large fluctuations in abundances, indicating oxygen depletion and varying organic matter fluxes. Dominant species at both sites are Bolivina anambra, Gabonita levis, Gavelinella dakotensis, Neobulimina albertensis, Praebulimina prolixa, and Tappanina cf. laciniosa. Benthic foraminiferal assemblages across the MCE show a threefold pattern: (1) stable ecological conditions below the MCE interval indicated by relatively high oxygenation and fluctuating organic matter flux, (2) decreasing oxygenation and/or higher organic matter flux during the MCE with decreasing benthic foraminiferal numbers and diversities (Site 1258) and a dominance of opportunistic species (Site 1260), and (3) anoxic to slightly dysoxic bottom-water conditions above the MCE as indicated by very low diversities and abundances or even the absence of benthic foraminifera. Slightly dysoxic conditions prevailed until OAE 2 at Demerara Rise. A comparison with other Atlantic Ocean and Tethyan sections indicates that the MCE reflects a paleoceanographic turning point towards lower bottom-water oxygenation, at least in the proto-North Atlantic Ocean and in the Tethyan and Boreal Realms. This general trend towards lower oxygenation of bottom waters across the MCE is accompanied by ongoing climate warming in combination with rising sea-level and the development of vast shallow epicontinental seas during the Middle and Late Cenomanian. These changes are proposed to have favoured the formation of warm and saline waters that may have contributed to intermediate- and deep-water masses at least in the restricted proto-North Atlantic and Tethyan Ocean basins, poor oxygenation of the Late Cenomanian sediments, and the changes in benthic foraminiferal assemblages across the MCE.