4 resultados para Tumour microenvironment
em Publishing Network for Geoscientific
Resumo:
Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (~432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (delta O2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.
Resumo:
Calcareous foraminifera are well known for their CaCO3 shells. Yet, CaCO3 precipitation acidifies the calcifying fluid. Calcification without pH regulation would therefore rapidly create a negative feedback for CaCO3 precipitation. In unicellular organisms, like foraminifera, an effective mechanism to counteract this acidification could be the externalization of H+ from the site of calcification. In this study we show that a benthic symbiont-free foraminifer Ammonia sp. actively decreases pH within its extracellular microenvironment only while precipitating calcite. During chamber formation events the strongest pH decreases occurred in the vicinity of a newly forming chamber (range of gradient about 100 µm) with a recorded minimum of 6.31 (< 10 µm from the shell) and a maximum duration of 7 h. The acidification was actively regulated by the foraminifera and correlated with shell diameters, indicating that the amount of protons removed during calcification is directly related to the volume of calcite precipitated. The here presented findings imply that H+ expulsion as a result of calcification may be a wider strategy for maintaining pH homeostasis in unicellular calcifying organisms.
Resumo:
The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.