27 resultados para Tsunami

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sediments from the Portuguese shelf are influenced by environmental changes in the surrounding continental and marine environment. These are largely controlled by the North Atlantic Oscillation, but additional impacts may arise from episodic tsunamis. In order to investigate these influences, a high resolution multi-proxy study has been carried out on a 5.4 m long gravity core and five box cores from the Tagus prodelta on the western Portuguese margin, incorporating geochemical (Corg/Ntotal ratios, d13Corg, d15N, d18O, Corg and CaCO3 content) and physical sediment properties (magnetic susceptibility, grain-size). Subsurface data of the five box cores indicate no major effect of early postdepositional alteration. Surface data show a higher fraction of terrigenous organic material close to the river mouth and in the southern prodelta. Gravity core GeoB 8903 covers the last 3.2 kyrs with a temporal resolution of at least 0.1 cm/yr. Very high sedimentation rates between 69 and 140 cm core depth indicate a possible disturbance of the record by the AD1755 tsunami, although no evidence for a disturbance is observed in the data. Sea surface temperature and salinity on the prodelta, the local budget of marine NO3- as well as the provenance of organic matter remained virtually constant during the past 3.2 kyrs. A positive correlation between magnetic susceptibility (MS) and North Atlantic Oscillation (NAO) is evident for the past 250 years, coinciding with a negative correlation between mean grain-size and NAO. This is assigned to a constant riverine supply of fine material with high MS, which is diluted by the riverine input of a coarser, low-MS component during NAO negative, high-precipitation phases. End-member modelling of the lithic grain-size spectrum supports this, revealing a third, coarse lithic component. The high abundance of this coarse end-member prior to 2 kyr BP is interpreted as the result of stronger bottom currents, concentrating the coarse sediment fraction by winnowing. As continental climate was more arid prior to 2 kyr BP (Subboreal), the coarse end-member may also consist of dust from local sources. A decrease in grain-size and CaCO3 content after 2 kyr BP is interpreted as a result of decreasing wind strength. The onset of a fining trend and a further decrease in CaCO3 around AD900 occurs simultaneous to climatic variations, reconstructed from eastern North Atlantic records. A strong increase in MS between AD1400 and AD1500 indicates higher lithic terrigenous input, caused by deforestation in the hinterland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence for the Chesapeake Bay Crater as the source for New Jersey continental margin ejecta is provided by fine-grained tektites and coarse-grained unmelted ejecta. The Upper Eocene ejecta deposit, now demonstrated to be part of the North American strewn field, occurs on the New Jersey continental margin at Ocean Drilling Program (ODP) Sites 904 and 903. The mineralogy, major oxide composition of the ejecta materials, and biostratigraphic age of the enclosing sediments link the origin of these ejecta to the recently recognized Chesapeake Bay impact crater, located only 330 km away. Sediments associated with the ejecta provide information about the dynamics of impact events. The 35-cm-thick ejecta-bearing layer can be subdivided into three subunits that indicate a sequence of events. Bottom subunit III documents sediment failure and deposition of gravel-sized fragments, middle subunit II records deposition of abundant sand-sized ejecta by gravity settling, and upper subunit I contains a 12-cm-thick sedimentary deposit containing rare silt-sized tektites and evidence of waning currents. These events are interpreted by linking sediment deposition to seismic ground motion and subsequent tsunami waves triggered by both the Chesapeake Bay impact and slope failures.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record-most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.

Relevância:

10.00% 10.00%

Publicador: