58 resultados para Tropical climate

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical and clay mineral parameters of a high accumulation marine sediment core from the Chilean continental slope (41°S) provide a 7700 yr record of rainfall variability in southern Chile related to the position of the Southern Westerlies. We especially use the iron content, measured with a time-resolution of ca. 10 yr on average, of 14C-accelerator mass spectrometry dated marine sediments as a proxy for the relative input of iron-poor Coastal Range and iron-rich Andean source rocks. Variations in this input are most likely induced by rainfall changes in the continental hinterland of the core position. Based on these interpretations, we find a pronounced rainfall variability on multi-centennial to millennial time-scales, superimposed on generally more arid conditions during the middle Holocene (7700 to 4000 cal yr B.P.) compared to the late Holocene (4000 to present). This variability and thus changes in the position of the Southern Westerlies are first compared to regional terrestrial paleoclimate data-sets from central and southern Chile. In order to derive possible wider implications and forcing mechanisms of the Holocene latitudinal shifts of the Southern Westerlies, we then compare our data to ice-core records from both tropical South America and coastal Antarctica. These records show similar bands of variability centered at ca. 900 and 1500 yr. Comparisons of band pass filters suggest a close connection of shifts of the Southern Westerlies to changes within the tropical climate system. The correlation to climate conditions in coastal Antarctica shows a more complicated picture with a phase shift at the beginning of the late Holocene coinciding with the onset of the modern state of El Niño-Southern Oscillation system. The presented data provide further evidence that the well known millennial-scale climate variability during the last glacial continued throughout the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High temporal resolution (three hours) records of temperature, wind speed and sea level pressure recorded at Antarctic research station Neumayer (70°S, 8°W) during 1982-2011 are analysed to identify oscillations from daily to intraseasonal timescales. The diurnal cycle dominates the three-hourly time series of temperature during the Antarctic summer and is almost absent during winter. In contrast, the three-hourly time series of wind speed and sea level pressure show a weak diurnal cycle. The dominant pattern of the intraseasonal variability of these quantities, which captures the out-of-phase variation of temperature and wind speed with sea level pressure, shows enhanced variability at timescales of ~ 40 days and ~ 80 days, respectively. Correlation and composite analysis reveal that these oscillations may be related to tropical intraseasonal oscillations via large-scale eastward propagating atmospheric circulation wave-trains. The second pattern of intraseasonal variability, which captures in-phase variations of temperature, wind and sea level pressure, shows enhanced variability at timescales of ~ 35, ~ 60 and ~ 120 days. These oscillations are attributed to the Southern Annular Mode/Antarctic Oscillation (SAM/AAO) which shows enhanced variability at these timescales. We argue that intraseasonal oscillations of tropical climate and SAM/AAO are related to distinct patterns of climate variables measured at Neumayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed deglacial and Holocene records of planktonic d18O and Mg/Ca-based sea surface temperature (SST) from the Okinawa Trough suggest that at ~18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multiproxy record has been acquired from a piston core (SO139-74KL) taken offshore southern Sumatra, an area which is situated in the southwestern sector of the tropical Indo-Pacific Warm Pool. The high-resolution data sets (X-ray fluorescence, total organic carbon, and C37 alkenones) were used to track changes in paleoproductivity, freshwater budget, and sea surface temperature (SST) of the tropical climate system at orbital time scales over the past 300 ka. Our paleoclimatic data show that enhanced marine paleoproductivity was directly related to strengthening of coastal upwelling during periods of increased boreal summer insolation and associated SE monsoon strength with a precessional cyclicity. Changes in freshwater supply were primarily forced by precession-controlled changes in boreal NW winter monsoon rainfall enclosing an additional sea level component. SST variations of 2°-5°C occurred at eccentricity and precessional cyclicity. We suggest that the sea surface temperature variability off southern Sumatra is predominantly related to three major causes: (1) variations in upwelling intensity; (2) an elevated freshwater input into the southern Makassar Strait leading to reduced supply of warmer surface waters from the western Pacific and increased subsurface water transport via the Indonesian Throughflow into the Indian Ocean; and (3) long-term changes in the intensity or frequency of low-latitude climate phenomena, such as El Niño-Southern Oscillation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral palaeoclimatic studies are under way at many sites throughout the wet tropics. However, arid environments have received less attention. Here we report a high-resolution, 63 yr record of coral d18O and d13C extracted from a Porites colony from the Dahlak Archipelago, off the Eritrean coast, in the southern Red Sea. The annual cycles of the coral d18O and d13C are inversely related while their inter-annual variations show a strong positive correlation, with similar inter-decadal trends. Inter-annual variations in coral d18O show a relatively weak correlation with the southern Red Sea SST, but are strongly correlated with the Indian Ocean SST, especially on the decadal time-scale. The range of the inter-annual variations in the coral d18O is high compared to changes in local SST, due to the amplifying effect of simultaneous changes in water isotopic composition. Due to this amplification of the climate signal the coral provides a better indication of regional oceangraphic behaviour than the local SST record. The norrtheast monsoon signal in the coral d18O dominates the mean annual signal and shows the best correlation with the instrumental data sets. It appears that variations in the coral d18O are controlled mainly by variations in the intensity of surface water influx from the Indian Ocean to the Red Sea during the winter northeast monsoon. Of particular significance is that the decadal time-scale variations in the coral skeletal d18O are closely correlated with both the Indian Ocean SST and with variations in the Pacific-based Southern Oscillation index. That is, isotopically light coral skeleton, indicating strong NE monsoon Red Sea inflow, correlates with periods of high Indian Ocean SST and with predominantly negative (El Nino) phases of the Southern Oscillation. The simultaneous nature of inter-decadal changes in Asian monsoon and ENSO behaviour suggest pan-Indo-Pacific tropical climate reorganisation and evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from d18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Niño-Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm through each so-called Bond cycle. This contrasts with the Greenland Ice Core Project (GRIP) record where interstadial peaks are successively cooler through each Bond cycle. This record confirms a link between tropical climate linked to ITCZ position and the climate of southern Europe at millennial timescales, in spite of showing a very good correlation with polar latitudes (GRIP) through d18O on Globigerina bulloides. In addition, because the warmest SSTs and the d18O on G. bulloides are so remarkably different, our work points to changes in seasonality as a strong control over the climatic pattern of the North Atlantic area and the marked influence of winter conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.