12 resultados para Transport electrons exchange
em Publishing Network for Geoscientific
Resumo:
The chemical and biochemical processes associated with the filtration of rainwater through soils, a step in groundwater recharge, were investigated. Under simulated climatic conditions in the laboratory, undisturbed soil columns of partly loamy sands, sandy soils and loess were run as lysimeters. A series of extraction procedures was carried out to determine solid matter in unaltered rock materials and in soil horizons. Drainage water and moisture movement in the columns were analysed and traced respectively. The behaviour of soluble humic substance was investigated by percolation and suspension experiments. The development of seepage-water in the unsaturated zone is closely associated with the soil genetic processes. Determining autonomous chemical and physical parameters are mineral composition and grain size distribution in the original unconsolidated host rock and prevailing climatic conditions. They influence biological activity and transport of solids, dissolved matter and gases in the unsaturated zone. Humic substances, either as amorphous solid matter or as soluble humic acids play a part in diverse sorption, solution and precipitation processes.
Resumo:
Studying diffusive transport in porous rocks is of fundamental importance in understanding a variety of geochemical processes including: element transfer, primary mineral dissolution kinetics and precipitation of secondary phases. Here we report new findings on the relationship between diffusive transport and textural characteristics of the pore systems on the example of mid-oceanic ridge basalts having different degree of alteration but very similar bulk pore volume. Diffusion processes in porous basalts were studied in situ using H2O -> D2O exchange experiments. The effective diffusion coefficients of water molecules increase systematically from 5.05*10**-11 to 1.19*10**-10 m**2/s for fresh and moderately altered basalts and from 2.40*10**-11 to 6.72*10**-11 m**2/s for completely altered basalt as temperature increases from 5 to 50 °C. The activation energy of the diffusion process increases from 12.29 ± 0.71 kJ/mol for fresh and moderately altered basalts to 14.3 ± 1.33 kJ/mol for completely altered basalt. The results indicate that neither the bulk porosity nor the degree of alteration can be used as proxies for the efficiency of element transport during MORB-water interaction. The formation of secondary phases that replace primary minerals and fill the pore space in the rock leads to the formation of tiny pores and phases with large specific surface area. These factors might have a dominant control on the transport properties of altered basaltic rocks.