4 resultados para Translating.

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate organic matter (POM) derived from permafrost soils and transported by the Lena River represents a quantitatively important terrestrial carbon pool exported to Laptev Sea sediments (next to POM derived from coastal erosion). Its fate in a future warming Arctic, i.e., its remobilization and remineralization after permafrost thawing as well as its transport pathways to and sequestration in marine sediments, is currently under debate. We present one of the first radiocarbon (14C) data sets for surface water POM within the Lena Delta sampled in the summers of 2009 - 2010 and spring 2011 (n = 30 samples). The bulk D14C values varied from -55 to -391 per mil translating into 14C ages of 395 to 3920 years BP. We further estimated the fraction of soil-derived POM to our samples based on (1) particulate organic carbon to particulate nitrogen ratios (POC : PN) and (2) on the stable carbon isotope (d13C) composition of our samples. Assuming that this phytoplankton POM has a modern 14C concentration, we inferred the 14C concentrations of the soil-derived POM fractions. The results ranged from -322 to -884 per mil (i.e., 3060 to 17 250 14C years BP) for the POC : PN-based scenario and from -261 to -944 per mil (i.e., 2370 to 23 100 14C years BP) for the d13C-based scenario. Despite the limitations of our approach, the estimated D14C values of the soil-derived POM fractions seem to reflect the heterogeneous 14C concentrations of the Lena River catchment soils covering a range from Holocene to Pleistocene ages better than the bulk POM D14C values. We further used a dual-carbon-isotope three-end-member mixing model to distinguish between POM contributions from Holocene soils and Pleistocene Ice Complex (IC) deposits to our soil-derived POM fraction. IC contributions are comparatively low (mean of 0.14) compared to Holocene soils (mean of 0.32) and riverine phytoplankton (mean of 0.55), which could be explained with the restricted spatial distribution of IC deposits within the Lena catchment. Based on our newly calculated soil-derived POM D14C values, we propose an isotopic range for the riverine soil-derived POM end member with D14C of -495 ± 153 per mil deduced from our d13C-based binary mixing model and d13C of -26.6 ± 1 per mil deduced from our data of Lena Delta soils and literature values. These estimates can help to improve the dual-carbon-isotope simulations used to quantify contributions from riverine soil POM, Pleistocene IC POM from coastal erosion, and marine POM in Siberian shelf sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated 'fe' ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution records of sedimentary proxies provide insights into fine-scale geochemical responses to climatic forcing. Gamma-ray attenuation (GRA) bulk-density data and magnetic stratigraphy records from Palmer Deep, Site 1098, show variability close to the same scale as ice cores, making this site ideal for high-resolution geochemical investigations. In conjunction with shipboard geophysical measurements, silica records allow high-resolution evaluation of the frequencies and amplitudes of biogenic variability. This provides investigators additional data sets to evaluate the global extent of climatic events that are presently defined by regional oceanic data sets (e.g., Younger Dryas in the North Atlantic) and to evaluate the potential mechanisms that link biological productivity and climate in the Southern Ocean. In addition, because of the observed links between diatom blooms and export productivity (Michaels and Silver, 1988, doi:10.1016/0198-0149(88)90126-4), biogenic silica may be an indicator of the efficiency of the biological pump (removal of organic carbon from the euphotic zone and burial within the sediments). Because the net removal of CO2 (on short time scales up to millennial, the balance between upwelled CO2, carbon fixation, and the removal of organic carbon from the surface ocean) can determine the atmospheric concentration; proxies that allow us to quantify export production yield insights into carbon cycle responses. In today's ocean, diatoms are integrally linked with new production (production based on the use of nitrate and molecular nitrogen rather than ammonium, which is generated by the microbial degradation of organic carbon) (Dugdale and Goering, 1967). Thus, as with nutrient utilization proxies, biogenic silica may be a good indicator of export production. The difficulties lie in translating the biogenic opal burial records to export production. Numerous factors control the preservation of sedimentary biogenic silica, including depth of the water column, water temperature, trace element chemistry, grazing pressure, bloom structure, and species composition of the diatom assemblage (Nelson et al., 1995, doi:10.1029/95GB01070). In addition, several recent investigations have noted additional complications. Iron limitation increases the uptake of Si relative to carbon (Hutchins et al., 1998, ; Takeda, 1998, doi:10.1038/31674). In the Southern Ocean, iron limitation could produce more robust, and thus better preserved, diatoms; thus, the burial record may be a record of iron limitation rather than of the export of organic carbon (Boyle, 1998). In addition, laboratory experiments show that bacteria accelerate the dissolution of biogenic silica (Bidle and Azam, 1999, doi:10.1038/17351). Both the species composition and temperature seem to influence the amount of dissolution. Evidence of recycling of silicic acid within the photic zone (Brzezinski et al., 1997) suggests that the silica pump (removal from the euphotic zone of silica relative to nitrogen and phosphorus) may work with variable efficiency. This becomes an issue when trying to reconstruct the removal of organic carbon from sedimentary biogenic silica records. In fact, there is a wide range in the Si:Corganic molar ratio in the Southern Ocean (0.18-0.81) (Nelson et al., 1995; Ragueneau et al., 2000, doi:10.1016/S0921-8181(00)00052-7). Thus, the presence (or absence) of biogenic silica alone may tell us little about the export productivity, complicating the interpretation of age-related trends. One recent assessment has added some hope to links between productivity and opal burial in the Southern Ocean (Pondaven et al., 2000). Quantitative comparison of different productivity proxies will greatly aid in this evaluation.