298 resultados para Trammel net, small-scale fishery, discards, Mediterranean sea

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcareous nannofossil assemblages of Ocean Drilling Program Hole 963D from the central Mediterranean Sea have been investigated to document oceanographic changes in surface waters. The studied site is located in an area sensitive to large-scale atmospheric and climatic systems and to high- and low-latitude climate connection. It is characterized by a high sedimentation rate (the achieved mean sampling resolution is <70 years) that allowed the Sicily Channel environmental changes to be examined in great detail over the last 12 ka BP. We focused on the species Florisphaera profunda that lives in the lower photic zone. Its distribution pattern shows repeated abundance fluctuations of about 10-15%. Such variations could be related to different primary production levels, given that the study of the distribution of this species on the Sicily Channel seafloor demonstrates the significant correlation to productivity changes as provided by satellite imagery. Productivity variations were quantitatively estimated and were interpreted on the basis of the relocation of the nutricline within the photic zone, led by the dynamics of the summer thermocline. Productivity changes were compared with oceanographic, atmospheric, and cosmogenic nuclide proxies. The good match with Holocene master records, as with ice-rafted detritus in the subpolar North Atlantic, and the near-1500-year periodicity suggest that the Sicily Channel environment responded to worldwide climate anomalies. Enhanced Northern Hemisphere atmospheric circulation, which has been reported as one of the most important forcing mechanisms for Holocene coolings in previous Mediterranean studies, had a remarkable impact on the water column dynamics of the Sicily Channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_UNLUATA_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during March and April 2008 in the Northern Libyan Sea, Southern Aegean Sea and in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets and are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_GR2-Mesozooplankton faecal pellet production rates dataset is based on samples taken during August and September 2008 in the Northern Libyan Sea, Southern Aegean Sea and the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during April 2008 in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SES_GR2_Mesozooplankton dataset is based on samples taken during August-September 2008 in Ionian Sea, Libyan Sea, Southern Aegean Sea and Northern Aegean Sea. Sampling volume was estimated by the net mouth surface and the towing distance for WP-2. The sample was split on board in two halves by using the beaker approach. The first sub-sample was immediately fixed and preserved in a seawater formalin solution containing about 4% buffered formaldehyde to allow the determination of species composition abundance. Pipette for the subsamples used in the taxonomic analysis of zooplankton under binocular microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples taken during March-April 2008 in Libyan Sea, in Southern Aegean Sea and in Northern Aegean Sea. Sampling volume was estimated by the net mouth surface and the towing distance for WP-2. Taxon-specific mesozooplankton abundance and total abundance: The sample was split on board in two halves by using the beaker approach. The first sub-sample was immediately fixed and preserved in a seawater formalin solution containing about 4% buffered formaldehyde to allow the determination of species composition abundance. Pipette for the subsamples used in the taxonomic analysis of zooplankton under binocular microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingestion on ciliates and phytoplankton dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod ingestion was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 20 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, and Temoraa stylifera according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). The egg production dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod egg production was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Clausocalanus furcatus, Temora stylifera. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mgC/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative distributions of calcareous nannofossils are analysed in the early-middle Pleistocene at the small Gephyrocapsa and Pseudoemiliania lacunosa zone transition in deep-sea cores from the Mediterranean Sea and North Atlantic Ocean (Ocean Drilling Program [ODP] Sites 977, 964 and 967, Deep Sea Drilling Project [DSDP] Site 607). The temporal and spatial mode of occurrence of medium-sized gephyrocapsids and reticulofenestrids has been examined to refine biostratigraphic constraints and evaluate possible relationships of stratigraphic patterns to environmental changes during a period of global climatic deterioration. The timing of bioevents has been calibrated using high-resolution sampling and correlation to the delta18O record in chronologically well-constrained sections. Newly identified events and ecostratigraphical signals enhance the stratigraphic resolution at the early-middle Pleistocene. The first occurrence (FO) of intermediate morphotypes between Pseudoemiliania and Reticulofenestra (Reticulofenestra sp.) is proposed as a reliable event within marine isotope stage (MIS) 35 or at the MIS 35/34 transition. The distribution of Reticulofenestra asanoi is characterized by rare and scattered occurrences in its lowest range, but the first common occurrence (FCO) is consistently identified at MIS 32 or 32/31; the last common occurrence (LCO) of the species is a distinctive event at MIS 23. In the studied interval, Gephyrocapsa omega dominates among medium-sized Gephyrocapsa. The FO of G. omega and contemporaneous re-entry of medium-sized gephyrocapsids at the lower-middle Pleistocene transition are diachronous between the Atlantic Ocean and Mediterranean Sea and from the western to eastern Mediterranean. In the Mediterranean, the LO of G. omega falls at MIS 15, insolation cycle 54 and is isochronous among the sites. Abundance fluctuations of G. omega show notable relations to early-middle Pleistocene climate changes; they considerably increase in abundance at the interglacial stages, suggesting warm water preferences. Gephyrocapsa omega temporarily disappears during the glacial MIS 22 and MIS 20. Above MIS 20, an impoverishment in G. omega and in the total abundance of medium-sized gephyrocapsids occurs. A decrease in abundance of G. omega is observed between the western Site 977 and the easternmost Site 967 in the Mediterranean Sea, as a possible response to high salinity and/or low nutrient content. Possible environmental influences on the distribution of R. asanoi and of Reticulofenestra sp. are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An astronomically calibrated timescale has recently been established [Hilgen, 1991, doi:10.1016/0012-821X(91)90082-S; doi:10.1016/0012-821X(91)90206-W] for the Pliocene and earliest Pleistocene based on the correlation of dominantly precession controlled sedimentary cycles (sapropels and carbonate cycles) in Mediterranean marine sequences to the precession time series of the astronomical solution of Berger and Loutre [1991, doi:10.1016/0277-3791(91)90033-Q ] (hereinafter referred to as Ber90). Here we evaluate the accuracy of this timescale by (1) comparing the sedimentary cycle patterns with 65°N summer insolation time series of different astronomical solutions and (2) a cross-spectral comparison between the obliquity-related components in the 65°N summer insolation curves and high-resolution paleoclimatic records derived from the same sections used to construct the timescale. Our results show that the carbonate cycles older than 3.5 m.y. should be calibrated to one precession cycle older than previously proposed. Application of the astronomical solution of Laskar [1990, doi:10.1016/0019-1035(90)90084-M], (hereinafter referred to as La90) with present-day values for the dynamical ellipticity of the Earth and tidal dissipation by the Sun and Moon results in the best fit with the geological record, indicating that this solution is the most accurate from a geological point of view. Application of Ber90, or La90 solutions with dynamical ellipticity values smaller or larger than the present-day value, results in a less obvious fit with the geological record. This implies that the change in the planetary shape of the Earth associated with ice loading and unloading near the poles during the last 5.3 million years was too small to drive the precession into resonance with the perturbation term, s6-g6+g5, of Jupiter and Saturn. Our new timescale results in a slight but significant modification of all ages of the sedimentary cycles, bioevents, reversal boundaries, chronostratigraphic boundaries, and glacial cycles. Moreover, a comparison of this timescale with the astronomical timescales of ODP site 846 [Shackleton et al., 1995, doi:10.2973/odp.proc.sr.138.106.1995; doi:10.2973/odp.proc.sr.138.117.1995] and ODP site 659 [Tiedemann et al., 1994, doi:10.1029/94PA00208] indicates that all obliquity-related glacial cycles prior to ~4.7 Ma in ODP sites 659 and 846 should be correlated with one obliquity cycle older than previously proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.