9 resultados para Traffic sub-areas
em Publishing Network for Geoscientific
Resumo:
In 2005, the International Ocean Colour Coordinating Group (IOCCG) convened a working group to examine the state of the art in ocean colour data merging, which showed that the research techniques had matured sufficiently for creating long multi-sensor datasets (IOCCG, 2007). As a result, ESA initiated and funded the DUE GlobColour project (http://www.globcolour.info/) to develop a satellite based ocean colour data set to support global carbon-cycle research. It aims to satisfy the scientific requirement for a long (10+ year) time-series of consistently calibrated global ocean colour information with the best possible spatial coverage. This has been achieved by merging data from the three most capable sensors: SeaWiFS on GeoEye's Orbview-2 mission, MODIS on NASA's Aqua mission and MERIS on ESA's ENVISAT mission. In setting up the GlobColour project, three user organisations were invited to help. Their roles are to specify the detailed user requirements, act as a channel to the broader end user community and to provide feedback and assessment of the results. The International Ocean Carbon Coordination Project (IOCCP) based at UNESCO in Paris provides direct access to the carbon cycle modelling community's requirements and to the modellers themselves who will use the final products. The UK Met Office's National Centre for Ocean Forecasting (NCOF) in Exeter, UK, provides an understanding of the requirements of oceanography users, and the IOCCG bring their understanding of the global user needs and valuable advice on best practice within the ocean colour science community. The three year project kicked-off in November 2005 under the leadership of ACRI-ST (France). The first year was a feasibility demonstration phase that was successfully concluded at a user consultation workshop organised by the Laboratoire d'Océanographie de Villefranche, France, in December 2006. Error statistics and inter-sensor biases were quantified by comparison with insitu measurements from moored optical buoys and ship based campaigns, and used as an input to the merging. The second year was dedicated to the production of the time series. In total, more than 25 Tb of input (level 2) data have been ingested and 14 Tb of intermediate and output products created, with 4 Tb of data distributed to the user community. Quality control (QC) is provided through the Diagnostic Data Sets (DDS), which are extracted sub-areas covering locations of in-situ data collection or interesting oceanographic phenomena. This Full Product Set (FPS) covers global daily merged ocean colour products in the time period 1997-2006 and is also freely available for use by the worldwide science community at http://www.globcolour.info/data_access_full_prod_set.html. The GlobColour service distributes global daily, 8-day and monthly data sets at 4.6 km resolution for, chlorophyll-a concentration, normalised water-leaving radiances (412, 443, 490, 510, 531, 555 and 620 nm, 670, 681 and 709 nm), diffuse attenuation coefficient, coloured dissolved and detrital organic materials, total suspended matter or particulate backscattering coefficient, turbidity index, cloud fraction and quality indicators. Error statistics from the initial sensor characterisation are used as an input to the merging methods and propagate through the merging process to provide error estimates for the output merged products. These error estimates are a key component of GlobColour as they are invaluable to the users; particularly the modellers who need them in order to assimilate the ocean colour data into ocean simulations. An intensive phase of validation has been undertaken to assess the quality of the data set. In addition, inter-comparisons between the different merged datasets will help in further refining the techniques used. Both the final products and the quality assessment were presented at a second user consultation in Oslo on 20-22 November 2007 organised by the Norwegian Institute for Water Research (NIVA); presentations are available on the GlobColour WWW site. On request of the ESA Technical Officer for the GlobColour project, the FPS data set was mirrored in the PANGAEA data library.
Resumo:
The Wilkes and Aurora basins are large, low-lying sub-glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice-rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of 40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital 40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of 40Ar/39Ar ages of detrital hornblende and biotite grains and the e-Nd of the bulk fine fraction; (2) 40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub-glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints.
Resumo:
Seismic data acquired over the eastern shelf and margin of the South Orkney microcontinent, Antarctica, have shown a high-amplitude reflection lying at a sub-bottom two-way traveltime (TWT) of 0.5-0.8 s. There appear to be two causes for the reflection which apply in different parts of the shelf. The more widespread cause of the reflection is a break-up unconformity associated with the opening of Jane Basin to the east. This is clearly seen where reflections in the underlying sequence are discordant. In contrast, in Eotvos Basin and the southeastern part of Bouguer Basin, the high-amplitude reflection in places cuts across bedding and is interpreted to be caused by silica diagenesis. A post-cruise analysis of core samples from Site 696 in Eotvos Basin by X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the presence of a silica diagenetic front at 520-530 mbsf. The position of the unconformity at this site is uncertain, but probably coincides with a change of detrital input near 548 mbsf. Fluctuations of physical properties related to the depth of the diagenetic front are difficult to separate from those related to the variation of detrital composition over the same depth interval. Correlation of the drilling record with the seismic record is difficult but with a synthetic seismogram it is demonstrated that diagenesis is the probable cause of the high-amplitude reflection. In Bouguer Basin at Site 695 the depth of the high-amplitude reflection was not reached by drilling; however, the reflection is probably also caused by silica diagenesis because of the biogenic silica-rich composition of the sediments cored. The estimated temperatures and ages of the sediments at the depths of the high-amplitude reflections at Sites 695 and 696 compare favorably with similar data from other diagenetic fronts of the world. The high-amplitude reflection in Bouguer Basin is commonly of inverse polarity, possibly caused either by interference between reflections from several closely-spaced reflecting layers, such as chert horizons, or by free gas trapped near the diagenetic front.
Resumo:
An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.
Resumo:
Sub-micron marine aerosol particles (PM1) were collected during the MERIAN cruise MSM 18/3 between 22 June 2011 and 21 July 2011 from the Cape Verde island Sao Vicente to Gabun crossing the tropical Atlantic Ocean and passing equatorial upwelling areas. According to air mass origin and chemical composition of the aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin, in the second part was marine and slightly biomass burning influenced (increasing tendency) and in the in last part of the cruise, approaching the African mainland, biomass burning influences became dominant. Generally aerosols were dominated by sulfate (caverage = 1.99 µg/m**3) and ammonium ions (caverage = 0.72 µg/m**3) that are well correlated and slightly increasing along the cruise. High concentrations of water insoluble organic carbon (WISOC) averaging 0.51 µg/m**3 were found probably attributed to the high oceanic productivity in this region. Water soluble organic carbon (WSOC) was strongly increasing along the cruise from concentrations of 0.26 µg/m**3 in the mainly marine influenced part to concentrations up to 3.3 µg/m**3 that are probably caused by biomass burning influences. Major organic constituents were oxalic acid, methansulfonic acid (MSA) and aliphatic amines. MSA concentrations were quite constant along the cruise (caverage = 43 ng/m**3). While aliphatic amines were more abundant in the first mainly marine influenced part with concentrations of about 20 ng/m**3, oxalic acid showed the opposite pattern with average concentrations of 12 ng/m**3 in the marine and 158 ng/m**3 in the biomass burning influenced part. The alpha dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng/m**3 range and followed oxalic acid closely. MSA and aliphatic amines accounted for biogenic marine (secondary) aerosol constituents whereas oxalic acid and the alpha dicarbonyl compounds were believed to result mainly from biomass burning. N-alkane concentrations increased along the cruise from 0.81 to 4.66 ng/m**3, PAHs and hopanes were abundant in the last part of the cruise (caverage of PAHs = 0.13 ng/m**3, caverage of hopanes = 0.19 ng/m**3). Levoglucosan was identified in several samples of the last part of the cruise in concentrations around 2 ng/m**3, pointing to (aged) biomass burning influences. The investigated organic compounds could explain 9.5% of WSOC in the mainly marine influenced part (dominating compounds: aliphatic amines and MSA) and 2.7% of WSOC in the biomass burning influenced part (dominating compound: oxalic acid) of the cruise.
Resumo:
Leg 90 recovered approximately 3705 m of core at eight sites lying at middle bathyal depths (1000-2200 m) (Sites 587 to 594) in a traverse from subtropical to subantarctic latitudes in the southwest Pacific region, chiefly on Lord Howe Rise in the Tasman Sea. This chapter summarizes some preliminary lithostratigraphic results of the leg and includes data from Site 586, drilled during DSDP Leg 89 on the Ontong-Java Plateau that forms the northern equatorial point of the latitudinal traverse. The lithofacies consist almost exclusively of continuous sections of very pure (>95% CaCO3) pelagic calcareous sediment, typically foraminifer-bearing nannofossil ooze (or chalk) and nannofossil ooze (or chalk), which is mainly of Neogene age but extends back into the Eocene at Sites 588, 592, and 593. Only at Site 594 off southeastern New Zealand is there local development of hemipelagic sediments and several late Neogene unconformities. Increased contents of foraminifers in Leg 90 sediments, notably in the Quaternary interval, correspond to periods of enhanced winnowing by bottom currents. Significant changes in the rates of sediment accumulation and in the character and intensity of sediment bioturbation within and between sites probably reflect changes in calcareous biogenic productivity as a result of fundamental paleoceanographic events in the region during the Neogene. Burial lithification is expressed by a decrease in sediment porosity from about 70 to 45% with depth. Concomitantly, microfossil preservation slowly deteriorates as a result of selective dissolution or recrystallization of some skeletons and the progressive appearance of secondary calcite overgrowths, first about discoasters and sphenoliths, and ultimately on portions of coccoliths. The ooze/chalk transition occurs at about 270 m sub-bottom depth at each of the northern sites (Sites 586 to 592) but is delayed until about twice this depth at the two southern sites (Sites 593 and 594). A possible explanation for this difference between geographic areas is the paucity of discoasters and sphenoliths at the southern sites; these nannofossil elements provide ideal nucleation sites for calcite overgrowths. Toward the bottom of some holes, dissolution seams and flasers appear in recrystallized chalks. The very minor terrigenous fraction of the sediment consists of silt- through clay-sized quartz, feldspar, mica, and clay minerals (smectite, illite, kaolinite, and chlorite), supplied as eolian dust from the Australian continent and by wind and ocean currents from erosion on South Island, New Zealand. Changes in the mass accumulation rates of terrigenous sediment and in clay mineral assemblages through time are related to various external controls, such as the continued northward drift of the Indo-Australian Plate, the development of Antarctic ice sheets, the increased desertification of the Australian continent after 14 m.y. ago, and the progressive increase in tectonic relief of New Zealand through the late Cenozoic. Disseminated glass shards and (altered) tephra layers occur in Leg 90 cores. They were derived from major silicic eruptions in North Island, New Zealand, and from basic to intermediate explosive volcanism along the Melanesian island chains. The tephrostratigraphic record suggests episodes of increased volcanicity in the southwest Pacific centered near 17, 13, 10, 5 and 1 m.y. ago, especially in the middle and early late Miocene. In addition, submarine basaltic volcanism was widespread in the southeast Tasman Sea around the Eocene/Oligocene boundary, possibly related to the propagation of the Southeast Indian Ridge through western New Zealand as a continental rift system.
Resumo:
Aim: Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location: The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 °C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods: We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results: Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m/year assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m/year in elevation and +2.7 m/year in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions: In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
Background and aim - The non-marine diatom communities in the Antarctic Region are characterized by a typical species composition, in close relationship with their environment. Despite the growing interest, the diatom flora of James Ross Island is only poorly known. The present paper discusses the diversity of limnoterrestrial diatoms on this island: seepages and streams. Methods - The diatom flora of 53 samples taken on the eastern side of the Ulu peninsula on James Ross Island has been studied using light and scanning electron microscopy. Key results - A total of 69 diatom taxa belonging to 26 genera have been observed. The genera Luticola, Diadesmis, Muelleria and Pinnularia dominated the species composition. The flora shows an interesting mixture of cosmopolitan and Antarctic species containing several species reaching on James Ross Island their most northern distribution in the Antarctic Region. The taxonomical position of one widespread Antarctic species, Psammothidium papilio (D.E.Kellogg, Stuiver, T.B.Kellogg & Denton) Kopalova & Van de Vijver comb. nov., is corrected. Conclusions - The limnoterrestrial diatom flora of James Ross Island has a rather low number of species, of which a large proportion shows a restricted Antarctic distribution.