31 resultados para Toowoomba Floods

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to analyze households' attitude toward flood risk in Cotonou in the sense to identify whether they are willing or not to leave the flood-prone zones. Moreover, the attitudes toward the management of wastes and dirty water are analyzed. The data used in this study were obtained from two sources: the survey implemented during March 2011 on one hundred and fifty randomly selected households living in flood-prone areas of Cotonou, and Benin Living Standard Survey of 2006 (Part relative to Cotonou on 1,586 households). Moreover, climate data were used in this study. Multinomial probability model is used for the econometric analysis of the attitude toward flood risk. While the attitudes toward the management of wastes and dirty water are analyzed through a simple logit. The results show that 55.3% of households agreed to go elsewhere while 44.7% refused [we are better-off here (10.67%), due to the proximity of the activities (19.33), the best way is to build infrastructures that will protect against flood and family house (14.67%)]. The authorities have to rethink an alternative policy to what they have been doing such as building socio-economic houses outside Cotonou and propose to the households that are living the areas prone to inundation. Moreover, access to formal education has to be reinforced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km**2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Episodes of ice-sheet disintegration and meltwater release over glacial-interglacial cycles are recorded by discrete layers of detrital sediment in the Labrador Sea. The most prominent layers reflect the release of iceberg armadas associated with cold Heinrich events, but the detrital sediment carried by glacial outburst floods from the melting Laurentide Ice Sheet is also preserved. Here we report an extensive layer of red detrital material in the Labrador Sea that was deposited during the early last interglacial period. We trace the layer through sediment cores collected along the Labrador and Greenland margins of the Labrador Sea. Biomarker data, Ca/Sr ratios and d18O measurements link the carbonate contained in the red layer to the Palaeozoic bedrock of the Hudson Bay. We conclude that the debris was carried to the Labrador Sea during a glacial outburst flood through the Hudson Strait, analogous to the final Lake Agassiz outburst flood about 8,400 years ago, probably around the time of a last interglacial cold event in the North Atlantic. We suggest that outburst floods associated with the final collapse of the Laurentide Ice Sheet may have been pervasive features during the early stages of Late Quaternary interglacial periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A seawall was constructed in 1897 along the steep coast of Streckelsberg, Usedom Island to stop the cliff retreat. It was destroyed several times by storm induced sea floods, reconstructed and gradually extended to a length of 450 m. After the severe storm event of 1/2.3.1949, no more repair work was implemented. The ruins were no longer capable of preventing further erosion of the Streckelsberg cliff. A new protective structure became a necessity against ongoing erosion, and to check the lowering of the abrasion platform. The construction of three breakwaters began in 1995. A severe storm occurred on 3/4.11.1995 before their completion. Coastal bottom sediment mapping using a sidescan-sonar carried out two days later showed that a channel system down to a depth of 1.5 m was cut into the sand layer covering the sea floor on both sides of the Koserow Bank. The bottom of these channels was paved with gravel and boulders. This layer was encountered in the whole surveyed area below a mobile sand layer. Discharged bodies of fine sand half a meter high and erosional cavities several m2 in diameter around boulders led to the conclusion that an intensive sediment movement down to a depth of 11 m had taken place during the storm. A storm related direction of sediment discharge could not be identified. The existing section of the breakwaters withstood the severe storm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemipelagic muds deposited during the past 5.3 cal kyr in the northern Gulf of Mexico (Orca Basin) contain seven intervals punctuated by relatively coarse siliciclastic grain-size peaks, planktonic faunal turnovers, and negative d13C excursions. We believe these episodes represent megaflood deposits reflecting historically unprecedented outfall of North American floodwater and terrigenous mud plumes into the gulf, resulting in collapse of the open-ocean pelagic ecosystem. The deposits record multidecadal episodes of high continental precipitation and large Mississippi River floods at ~4.7, 3.5, 3.0, 2.5, 2.0, 1.2, and 0.3 cal ka (500-1200-year recurrence interval). Variations in tropical plankton frequencies define submillenial warming intervals that culminate in these fluvial episodes. Strengthened tropical currents in the gulf at these times appear to have increased sea surface temperatures and associated flow of moist gulf air to the midwest. Terrestrial paleohydrologic records support the marine evidence for millennial-scale changes in recurrence of large midwest flood episodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 450 year spring-summer flood layer time series at seasonal resolution has been established from the varved sediment record of Lake Ammersee (southern Germany), applying a novel methodological approach. The main results are (1) the attainment of a precise chronology by microscopic varve counting, (2) the identification of detrital layers representing flood-triggered fluxes of catchment material into the lake, and (3) the recognition of the seasonality of these flood layers from their microstratigraphic position within a varve. Tracing flood layers in a proximal and a distal core and correlating them by application of the precise chronology provided information on the depositional processes. Comparing the seasonal flood layer record with daily runoff data of the inflowing River Ammer for the period from 1926 to 1999 allowed the definition of an approximate threshold in flood magnitude above which the formation of flood layers becomes very likely. Moreover, it was possible for the first time to estimate the "completeness" of the flood layer time series and to recognize that mainly floods in spring and summer, representing the main flood seasons in this region, are well preserved in the sediment archive. Their frequency distribution over the entire 450 year time series is not stationary but reveals maxima for colder periods of the Little Ice Age when solar activity was reduced. The observed spring-summer flood layer frequency further shows trends similar to those of the occurrence of flood-prone weather regimes since A.D. 1881, probably suggesting a causal link between solar variability and changes in midlatitude atmospheric circulation patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

West Antarctic ice shelves have thinned dramatically over recent decades. Oceanographic measurements that explore connections between offshore warming and transport across a continental shelf with variable bathymetry toward ice shelves are needed to constrain future changes in melt rates. Six years of seal-acquired observations provide extensive hydrographic coverage in the Bellingshausen Sea, where ship-based measurements are scarce. Warm but modified Circumpolar Deep Water floods the shelf and establishes a cyclonic circulation within the Belgica Trough with flow extending toward the coast along the eastern boundaries and returning to the shelf break along western boundaries. These boundary currents are the primary water mass pathways that carry heat toward the coast and advect ice shelf meltwater offshore. The modified Circumpolar Deep Water and meltwater mixtures shoal and thin as they approach the continental slope before flowing westward at the shelf break, suggesting the presence of the Antarctic Slope Current. Constraining meltwater pathways is a key step in monitoring the stability of the West Antarctic Ice Sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.