10 resultados para Tooth Abrasion

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antarctic land surfaces in South Victoria Land, all without a covering of vegetation, are actively formed by winds which often reach velocities of more than 100 km/h. Consequently, deflation and abrasion are essential factors in the process of slope formation. Water erosion, active only during the very short summer period, is limited to a few localities in South Victoria Land. Experiments in a wind tunnel proved that ventifacts in the Dry Valleys can be formed within a few decades or at the most, a few centuries. Yearly corrasion rates average around a maximum of a few millimeters. Considerable variability is caused by the different exposures of ventifacts within the micro relief end the varying resistance of the rocks. The importance of ice crystals (snow) for abrasion processes should not be overestimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.