61 resultados para Tolerância a Pb e Zn
em Publishing Network for Geoscientific
Resumo:
The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.
Resumo:
Effects of soil properties on the accumulation of metals to wood mice (Apodemus sylvaticus) were evaluated at two sites with different pH and organic matter content of the soil. pH and organic matter content significantly affected accumulation of Cd, Cu, Pb and Zn in earthworms and vegetation. For Cd, Cu and Zn these effects propagated through the food web to the wood mouse. Soil-to-kidney ratios differed between sites: Cd: 0.15 versus 3.52, Cu: 0.37 versus 1.30 and Zn: 0.33-0.83. This was confirmed in model calculations for Cd and Zn. Results indicate that total soil concentrations may be unsuitable indicators for risks that metals pose to wildlife. Furthermore, environmental managers may, unintentionally, change soil properties while taking specific environmental measures. In this way they may affect risks of metals to wildlife, even without changes in total soil concentrations.
Resumo:
Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.
Resumo:
Thirteen sediment samples, including calcareous ooze, sandy clay, volcanic sand, gravel, and volcanic breccia, from Ocean Drilling Program (ODP) Sites 732B, 734B, 734G and Conrad Cruise 27-9, Station 17, were examined. Contents of major and trace elements were determined using XRF or ICP (on samples <0.5 g). Determinations of rare earth elements (REE) were performed using ICP-MS. Mineralogy was determined using XRD. On the basis of the samples studied, the sediments accumulating in the Atlantis II Fracture Zone are characterized by generally high MgO, Cr, and Ni contents compared with other deep-sea sediments. A variety of sources are reflected in the mineralogy and geochemistry of these sediments. Serpentine, brucite, magnetite, and high MgO, Cr, and Ni contents indicate derivation from ultramafic basement. The occurrence of albite, analcime, primary mafic minerals, and smectite/chlorite in some samples, coupled with high SiO2, Al2O3, TiO2, Fe2O3, V, and Y indicate contribution from basaltic basement. A third major sediment source is characterized as biogenic material and is reflected primarily in the presence of carbonate minerals, and high CaO, Sr, Pb, and Zn in certain samples. Kaolinite, illite, quartz, and some chlorite are most likely derived from continental areas or other parts of the ocean by long-distance sediment transport in surface or other ocean currents. Proportions of source materials in the sediments reflect the thickness of the sediment cover, slope of the seafloor, and the nature of and proximity to basement lithologies. REE values are low compared to other deep-sea sediments and indicate no evidence of hydrothermal activity in the Atlantis II Fracture Zone sediments. This is supported by major- and trace-element data.
Resumo:
According to geochemical analyses carbonaceous sediments from deep basins of the Baltic Sea containing 3-5% of organic carbon are enriched in some metals such as Cu, Mo, Ni, Pb, Zn, V, and U relative to shallow-water facies of the Bay of Finland. These metals also enrich (relative to background values in clayey rocks) ancient carbonaceous shales, where the average Cu and V contents are slightly higher and that of Mo, Pb, and Zn lower than in deep-sea carbonaceous sediments of the Baltic Sea. In addition, the deep-sea carbonaceous sediments of the Baltic Sea are enriched (but less notably than ancient shales) in Ag, As, Bi, and Cd. These data confirm previous assumptions that carbonaceous sediments accumulating now in seas and oceans can be considered as recent analogs of ancient metalliferous shales.
Resumo:
At Site 585 of Deep Sea Drilling Project Leg 89 more than 500 m of volcaniclastic to argillaceous middle-Late Cretaceous sediments were recovered. Analyses by X-ray diffraction (bulk sediment and clay fraction), transmission electron microscopy, molecular and atomic absorption, and electron microprobe were done on Site 585 samples. We identify four successive stages and interpret them as the expression of environments evolving under successive influences: Stage 1, late Aptian to early Albian - subaerial and proximal volcanism, chiefly expressed by the presence of augite, analcite, olivine, celadonite, small and well-shaped transparent trioctahedral saponite, Al hydroxides, Na, Fe, Mg, and various trace elements (Mn, Ni, Cr, Co, Pb, V, Zn, Ti). Stage 2, early to middle Albian - submarine and less proximal volcanic influence, characterized by dioctahedral and hairy Mg-beidellites, a paucity of analcite and pyroxenes, the presence of Mg and K, and local alteration of Mg-smectites to Mg-chlorites. Stage 3, middle Albian to middle Campanian - early marine diagenesis, marked by the development of recrystallization from fleecy smectites to lathed ones (all of alkaline Si-rich Fe-beidellite types), by the development of opal CT and clinoptilolite, and by proximal to distal volcanic influences (Na parallel to Ti, K). Local events consist of the supply of reworked palygorskite during the Albian-Cenomanian, and the recurrence of proximal volcanic activity during the early Campanian. Stage 4, late Campanian to Maestrichtian - development of terrigenous supply resulting from the submersion of topographic barriers; this terrigenous supply is associated with minor diagenetic effects and is marked by a clay diversification (beidellite, illite, kaolinite, palygorskite), the rareness of clay recrystallizations, and the disappearance of volcanic markers.
Resumo:
A large deposit of ferromanganese oxide coated sands and scattered manganese nodules occurs in the northern portion of Lake Ontario. The Mn and Fe contents of the concretions are similar to those in concretions from other environments, while their Ni, Cu, and Co contents are lower than in deep-sea nodules, but higher than in most previously described lacustrine concretions. Pb and Zn are high in the coatings and exceed the concentrations found in many previously analyzed Mn deposits. Within the deposit, Mn, Ni, Co, and Zn contents are correlated, and they vary inversely with Fe. Mn, Fe, Ni, Cu, and Pb are present in the interstitial waters of the sediments underlying the deposit in higher concentrations than in the overlying lake waters, thus providing a potential source of metals for concretion formation.The origin and compositional variations in the deposit possibly can be explained in terms of the fractionation and precipitation of Fe and Mn as a result of redox variations in the lake sediments. Eh increases from south to north across the deposit in such a way that iron may be selectively oxidized and precipitated in the south and manganese, in the north. The upward diffusion of Mn, Fe, and associated elements from the underlying sediments probably provides the principal source of the metals in the south of the deposit, while metal-enriched bottom waters are probably the principal source in the north.
Resumo:
As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.
Resumo:
A 3.38 m long sediment core raised from the tidal flat sediments of the 'Blauortsand' in the Wadden Sea northwest of Büsum (Schleswig-Holstein, Germany) was analysed in order to investigate long term changes in sediment pollution with Pb, Cu, Zn and Cd. Comparison with the topographic maps since 1952 and 210Pb activity allowed a general dating of the sediment succession in the core. The heavy metal concentrations including 210Pb of the < 20 µm grain-size fraction in thick sediment slices below 1.30 m indicated background niveaus. Their values increased and reached modern levels in the upper sediment layers of the core above 1 m. The increments for Pb, Cu, Zn was 1 to 3 fold and Cd up to 11 fold since the second half of the 19th century. More investigations are needed to quantify the geographical extent and history of the contaminations shown in this pilot study.
Resumo:
Concentrations of labile dissolved forms of Cu, Zn, Pb, and Cu in waters of the Kara Sea and Ob and Yenisey estuaries measured on board during Cruise 49 of R/V Dmitry Mendeleev.