16 resultados para Timon of Athens (Legendary character)
em Publishing Network for Geoscientific
Resumo:
The proposed origins for the Enriched Mantle I component are many and various and some require an arbitrary addition of an exotic component, be it pure sediment or an enriched melt from the subcontinental lithosphere. With Pitcairn, Walvis Ridge is the 'type-locality' for the Enriched Mantle I (EMI) component. We analyzed basalts from DSDP Site 525A, Site 527 and Site 528 on the Walvis Ridge with the aim to constrain the history of its source. The isotopic compositions we measured for the three sites overlap with the values obtained by Richardson et al. (1982a) and extend towards less radiogenic Sr and more radiogenic Pb and Nd isotopic compositions. We used our new trace element and radiogenic isotope (Hf, Nd, Pb and Sr) characterization in combination with the literature data to produce the simplest possible model that satisfies the trace element and isotopic constraints. Although the elevated 207Pb/204Pb with respect to 206Pb/204Pb predicts an ancient origin for EMI, none of the proposed origins had modeled it as such. The data is consistent with the EMI composition being formed by the addition of a melt to a mantle with bulk Earth-like composition followed by melt extraction of a low degree melt. The timing of these two events is such that the metasomatism has to have taken place prior to 4 Ga and the subsequent melt removal before 3.5 Ga. This confirms the expectation of an ancient character for the EMI component. The Walvis Ridge data shows two distinct two component mixing trends: one formed by the less enriched Site 527 and Site 528 basalts and one formed by the Site 525A basalts. The two trends have the EMI endmember in common. The less depleted end of the Site 527-Site 528 basalts is FOZO-like and can be explained by the addition of a recycled component (basaltic oceanic crust plus sediment). This recycled component was altered during subduction. The sense and magnitude of the chemical fractionation resulting from the subduction alteration are in agreement with dehydration experiments on basalts and sediment. Compared to other EMI like basalts the Walvis Ridge basalts have flatter REE patterns and show less fractionation between large ion lithophile and heavy REE elements. Using the isotopic compositions as constrains for the parent-daughter ratios we were able to model the trace element patterns of the basalts as melting between 5 and 10% for Site 525A and between 10 and 15% for the depleted end of the Site 528-Site 527 array. In all cases a significant portion of melting takes place in the garnet stability field.
Resumo:
From a 10.7 m long gravity core from the Sierra Leone Rise (5°39.5' N, 19°51' W) a detailed oxygen and carbon isotope record of both planktonic and benthonic foraminifera species was obtained extending from the Recent to Jaramillo event. The analysis yielded six major results. 1. Benthos oxygen isotopes varied by 1.8-2.2 per mil from interglacial to glacial times and may indicate a synglacial cooling of North Atlantic Deep Water at 2800 m depth by 1-3°C. 2. Variable anomalies between the benthos and plankton d18O record indicate a cooling of sea-surface temperatures (SST) by up to 6 °C during some glacial stages. 3. Southerly trade winds and equatorial upwelling may excert the primary control off SST variations, in particular of extremee values of cold and warm stages and of the abrupt character of climate transitions and their leads and lags, and finally, of variable sedimentation rates. 4. The benthos d13C record correlates well with the flux and preservation of organic matter. 5. A new time scale, CARPOR, was established from the assumption that terrigenous sediment supply was ± constant bit CaCO3 varied considerably. When applied to the d18O record, three major and numerous short-term variations of sedimentation rates (0.8 to 4.0 cm/kyr) can be distinguished. 6. The climatic record was modified by bioturbation much more strongly during cold than during warm stages.
Resumo:
We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.
Resumo:
The Carnegie, on its seventh cruise and last cruise, collected seventy-five samples of deep-sea deposits in the southeastern and the north Pacific. This report contains an account of the general character of the deep-sea samples collected and of the distribution of the various deposit types, together with the results of chemical, mechanical, X-ray, and other types of analyses. As indicated in the text, many of the analyses were carried out in whole or in part by other investigators.
Resumo:
In the present work Quaternary radiolarian assemblages from the Southwest Pacific were investigated due to their importance for correlation and identification of climatic changes. The studied Ocean Drilling Program (ODP) Site 1123 (Leg 181) is situated on the northern flanks of the Chatham Rise, 1100 kilometres offshore eastern New Zealand and in a water depth o f 3290 metres. It is situated just north of the Subtropical Convergence (STC) in temperate climatic conditions, influenced by the cold deep Deep Western Boundary Current (DWBC) and by the subtropical East Cape Current (ECC) in shallow water depths. A continuous record of 79 sediment samples from this site with a temporal resolution of ~15,000 years provided a medium-resolution record of radiolarian assemblages through the Quaternary. This allowed investigations on how radiolarian assemblages are influenced by climatic variations at obliquity and eccentricity bandwidth, with periodic variations of 40,000, 100,000 and 400,000 years, respectively. Emphasis was given to changes in radiolarian assemblages through the Mid-Pleistocene climate transition (MPT) that marks a fundamental reorganisation in Earth's climate system by change from 40,000 to 100,000 year cycles. Glacial and interglacial variations in oceanography were investigated. Especially the influence of the DWBC was examined due to its input of deep and cold waters to the Pacific Ocean, which plays an important role in Earth's climate system. 167 radiolarian counting groups were examined concerning variations in radiolarian abundance, preservation, diversity, the relative abundance of orders, families, and selected species in order to detect influences of past climatic variations in the Southwest Pacific. No significant changes in radiolarian assemblages were found in coincidence with the onset of the MPT. Investigations led to the recognition of four characteristic phases within the last 1.2 million years. Within one of these phases (Phase Ill), about 160,000 years after the onset of the MPT, fundamental changes in radiolarian assemblages occurred. Investigations yielded highest diversity and highest numbers of nassellarians in abundant samples, whereas sparse samples were mostly poorly preserved and were dominated by spumellarians. Abundance of certain radiolarian families in interglacials or glacials indicated their usefulness as indicators for climatic conditions at Site 1123. Trends o f selected taxa within these families supported the significance of warm- or cool-water preference of these families. Use of 67 radiolarian species as climate indicators showed abundance of warm-water assemblages within interglacials, whereas abundance of cool-water species was increased within glacials. Depth distributional patterns of 52 radiolarian species indicated a strong influence of shallow waters, possibly the EEC, within interglacials and increased influence of deep and intermediate waters, possibly of southern-sourced character and the DWBC in glacial stages.
Resumo:
The Albian/Cenomanian strata in Hole 530A are organically richer than are the post-Cenomanian strata. Organic matter is thermally immature and appears to be of dominantly marine origin with either variable levels of oxidation or variable amounts of terrestrial input. Geochemical data alone cannot establish whether the black shales present in Hole 530A represent deposition within a stagnant basin or within an expanded oxygen-minimum layer
Resumo:
LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.