26 resultados para Time and frequency autocorrelation

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early descriptions for species of Aka were poor in detail, and the only spicule type that occurs in this genus does not vary much between species, which led to taxonomic confusion. Moreover, the type specimens of 5 species of Aka are lost, causing considerable problems. Mediterranean specimens of Aka were identified as Aka labyrinthica (Hancock, 1849) by Topsent (1900), even though this species was originally described from the Indo-Pacific. All following publications on Mediterranean Aka accepted Topsent's decision. We assessed this problem with new samples from the Ionian Sea. Our material consisted of only one specimen of Aka, and we had to rely mainly on spicule characters for comparison to other species. We developed a system for species recognition solely based on spicular characters and biometry, involving a combination of the parameters oxea length, width, tip form and angle of curvature. This approach was surprisingly accurate. Forming ratios of the above parameters was less helpful, but can sometimes provide additional information. We identified our sample as Aka infesta (Johnson, 1899), and describe it as a minute-fistulate species with large, multicamerate erosion traces and stout, smooth oxeas. Our data further imply that A. labyrinthica sensu Hancock has not yet been found in the Mediterranean. A. labyrinthica sensu Topsent is a collection of different species not including A. labyrinthica sensu Hancock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed stable isotopic and calcium carbonate records (with a sampling resolution of 3000 yr.) from the middle Miocene section of hydraulic piston corer (HPC) Hole 574A provide a sequence that records the major shift in the oxygen isotopic composition of the world's oceans that occurred at about 14 Ma. The data suggest that this transition was rapid and spans about 30,000 yr. of sediment deposition. In intervals before and after the shift, the mean d18O values are characterized by a constant mean with a high degree of variability. The degree of variability in both the d18O and d13C records is comparable to that observed for the Pliocene and earliest Pleistocene and does not show a significant change before or after the major shift in the d18O record. Whereas the oxygen isotopic record is characterized by relatively stable mean values before and after the middle Miocene event, the d13C record shows a number of significant offsets in the mean value separated by intervals of high-frequency variations. Time and frequency domain analysis of all records from Hole 574A indicate that the frequency components shown to be related to orbital changes in the Pleistocene record are also present in the middle Miocene. The high variability observed in the Site 574 isotopic records places important constraints on models describing the role of formation of the Antarctic ice sheet during the middle Miocene climatic transitions. Thus, HPC Hole 574A provides a valuable sequence for detailed study of climatic variability during an important time in the Earth's history, although we cannot provide a definitive explanation of the major oxygen isotopic event of the middle Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early Triassic oceans were characterized by deposition of a number of "anachronistic facies", including microbialites, seafloor carbonate cement fans, and giant ooids. Giant ooids were particularly prevalent in Lower Triassic sections across South China and exhibit unusual features that may provide insights into marine environmental conditions following the end-Permian mass extinction. The section at Moyang (Guizhou Province) contains abundant giant ooids ranging in size between 2 and 6 mm (maximum 12 mm) and exhibiting various cortical structures, including regular, deformed, compound, regenerated and "domed". Preservation of ooid cortical structure is generally good as indicated by petrographic observations, and trace element and carbon isotope analyses suggest that diagenesis occurred in a closed diagenetic system. All ooids exhibit fine concentric laminae, frequently alternating between light-colored coarsely crystalline and dark-colored finely crystalline layers probably reflecting variation in organic content or original mineralogy. Under scanning electron microscope, biomineralized filaments or biofilms and tiny carbonate fluorapatite (CFA) crystals are commonly found in the finely crystalline layers. We infer that the precipitation of CFA was related to adsorption of P via microbial activity on the surfaces of ooids following episodic incursions of deep waters rich in carbon dioxide, hydrogen sulfide and phosphate into shallow-marine environments. Giant ooid precipitation may have been promoted in shallow ramp settings during these events by increased watermass agitation and supersaturation with respect to calcium carbonate, as well as reduced carbonate removal rates through biotic skeletal formation. Spatio-temporal distribution data reveal that giant ooids were widespread in the Tethyan region during the Early Triassic, and that they were most abundant immediately after the end-Permian crisis and disappeared gradually as metazoans repopulated marine environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper 38 m of Hole 722B sediments (Owen Ridge, northwest Arabian Sea) was sampled at 20 cm intervals and used to develop records of lithogenic percent, mass accumulation rate, and grain size spanning the past 1 m.y. Over this interval, the lithogenic component of Owen Ridge sediments can be used to infer variability in the strength of Arabian Sea summer monsoon winds (median grain size) and the aridity of surrounding dust source-areas (mass accumulation rate; MAR in g/cm**2/k.y). The lithogenic MAR has strong 100, 41, and 23 k.y. cyclicities and is forced primarily by changes in source-area aridity associated with glacial-interglacial cycles. The lithogenic grain size, on the other hand, exhibits higher frequency variability (23 k.y.) and is forced by the strength of summer monsoon winds which, in turn, are forced by the effective sensible heating of the Indian-Asian landmass and by the availability of latent heat from the Southern Hemisphere Indian Ocean. These forcing mechanisms combine to produce a wind-strength record which has no strong relationship to glacial-interglacial cycles. Discussion of the mechanisms responsible for production of primary Milankovitch cyclicities in lithogenic records from the Owen Ridge is presented elsewhere (Clemens and Prell, 1990, doi:10.1029/PA005i002p00109). Here we examine the 1 m.y. record from Hole 722B focusing on different aspects of the lithogenic components including an abrupt change in the monsoon wind-strength record at 500 k.y., core-to-core reproducibility, comparison with magnetic susceptibility, coherency with a wind-strength record from the Pacific Ocean, and combination frequencies in the wind-strength record. The Hole 722B lithogenic grain-size record shows an abrupt change at 500 k.y. possibly indicating decreased monsoon wind-strength over the interval from 500 k.y. to present. The grain-size decrease appears to be coincident with a loss of spectral power near the 41 k.y. periodicity. However, the grain-size decrease is not paralleled in the Globigerina bulloides upwelling record, an independent record of summer monsoon wind-strength (Prell, this volume). These observations leave us with competing hypotheses possibly involving: (1) a decrease in the sensitivity of monsoon windstrength to obliquity forcing, (2) decoupling of the grain size and G. bulloides records via a decoupling of the nutrient supply from wind-driven upwelling, and/or (3) a change in dust source-area or the patterns of dust transporting winds. Comparison of the lithogenic grain size and weight percent records from Hole 722B with those from a nearby core shows that the major and most minor events are well replicated. These close matches establish our confidence in the lithogenic extraction techniques and measurements. Further, reproducibility on a core-to-core scale indicates that the eolian depositional signal is regionally strong, coherent, and well preserved. The lithogenic weight percent and magnetic susceptibility are extremely well correlated in both the time and frequency domains. From this we infer that the magnetically susceptible component of Owen Ridge sediments is of terrestrial origin and transported to the Owen Ridge via summer monsoon winds. Because of the high correlation with the lithogenic percent record, the magnetic susceptibility record can be cast in terms of lithogenic MAR and used as a high resolution proxy for continental aridity. In addition to primary Milankovitch periodicities, the Hole 722B grain-size record exhibits periodicity at 52 k.y. and at 29 k.y. Both periodicities are also found in the grain-size record from piston core RC11-210 in the equatorial Pacific Ocean. Comparison of the two grain-size records shows significant coherence and zero phase relationships over both the 52 and 29 k.y. periodicities suggesting that the strengths of the Indian Ocean monsoon and the Pacific southeasterly trade winds share common forcing mechanisms. Two possible origins for the 52 and 29 k.y. periodicities in the Hole 722B wind-strength record are (1) direct Milankovitch forcing (54 and 29 k.y. components of obliquity) and (2) combination periodicities resulting from nonlinear interactions within the climate system. We find that the 52 and 29 k.y. periodicities show stronger coherency with crossproducts of eccentricity and obliquity (29 k.y.) and precession and obliquity (52 k.y.) than with direct obliquity forcing. Our working hypothesis attributes these periodicities to nonlinear interaction between external insolation forcing and internal climatic feedback mechanisms involving an interdependence of continental snow/ice-mass (albedo) and the hydrological cycle (latent heat availability).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate summer and fall residency and habitat selection by gray whales, Eschrichtius robustus, together with the biomass of benthic amphipod prey on the coastal feeding grounds along the Chukotka Peninsula. Thirteen gray whales were instrumented with satellite transmitters in September 2006 near the Chukotka Peninsula, Russia. Nine transmitters provided positions from whales for up to 81 days. The whales travelled within 5 km of the Chukotka coast for most of the period they were tracked with only occasional movements offshore. The average daily travel speeds were 23 km/day (range 9-53 km/day). Four of the whales had daily average travel speeds <1 km/day suggesting strong fidelity to the study area. The area containing 95% of the locations for individual whales during biweekly periods was on average 13,027 km**2 (range 7,097-15,896 km**2). More than 65% of all locations were in water <30 m, and between 45 and 70% of biweekly kernel home ranges were located in depths between 31 and 50 m. Benthic density of amphipods within the Bering Strait at depths <50 m was on average ~54 g wet wt/m**2 in 2006. It is likely that the abundant benthic biomass is more than sufficient forage to support the current gray whale population. The use of satellite telemetry in this study quantifies space use and movement patterns of gray whales along the Chukotka coast and identifies key feeding areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 1/cm**3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 10**3/cm**3 in March. Minimum values below 10**2/cm**3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM) or Southern Ocean Index (SOI). The impact of the Pinatubo volcanic eruption and strong El Niño events did not affect CP concentrations. From thermodenuder experiments we deduced that the portion of volatile (at 125 °C) and semi-volatile (at 250 °C) particles which could be both associated with biogenic sulfur aerosol, was maximum during austral summer, while during winter non-volatile sea salt particles dominated. During September through April we could frequently observe enhanced concentrations of ultrafine particles within the nucleation mode (between 3 nm and 7 nm particle diameter), preferentially in the afternoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten ODP sites drilled in a depth transect (2164-4775 m water depth) during Leg 172 recovered high-deposition rate (>20 cm/kyr) sedimentary sections from sediment drifts in the western North Atlantic. For each site an age model covering the past 0.8-0.9 Ma has been developed. The time scales have a resolution of 10-20 kyr and are derived by tuning variations of estimated carbonate content to the orbital parameters precession and obliquity. Based on the similarity in the signature of proxy records and the spectral character of the time series, the sites are divided into two groups: precession cycles are better developed in carbonate records from a group of shallow sites (2164-2975 m water depth, Sites 1055-1058) while the deeper sites (2995-4775 m water depth, Sites 1060-1063) are characterized by higher spectral density in the obliquity band. The resulting time scales show excellent coherence with other dated carbonate and isotope records from low latitudes. Besides the typical Milankovitch cyclicity significant variance of the resulting carbonate time series is concentrated at millennial-scale changes with periods of about 12, 6, 4, 2.5, and 1.5 kyr. Comparisons of carbonate records from the Blake Bahama Outer Ridge and the Bermuda Rise reveal a remarkable similarity in the time and frequency domain indicating a basin-wide uniform sedimentation pattern during the last 0.9 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Neogene and Quaternary sedimentary record of Leg 71 and previously drilled sequences from the Southern Ocean reveal evidence of a major late Miocene change of oceanic and glacial conditions in the southern high latitudes during paleomagnetic Chron 9. The characteristics of late Miocene sedimentation and in particular the study of erosional patterns and ice-rafted debris suggest the following conclusions. 1) In the late Miocene, the Polar Front first migrated to the northern latitudes of the Southern Ocean and surface water temperatures became similar to those of today. 2) Extensive ice shelves or ice tongues were not present along the Antarctic margin until late Chron 9 (about 9.0 Ma). 3) Before Chron 9, West Antarctica was occupied by an archipelago and the West Antarctic Sea. 4) Extensive ice shelves formed in the West Antarctic region, eventually coalescing and thickening to form the grounded West Antarctic ice sheet by Chron 9. 5) The newly formed West Antarctic ice sheet was probably unstable and frequently became an ungrounded ice shelf, thus accounting for the scarcity of late Miocene ice-rafted debris. 6) Extensive erosion or nondeposition of sediment was probably the result of increased Antarctic Bottom Water (AABW) formation in the West Antarctic region during the initial formation of extensive West Antarctic ice shelves and during periods when the West Antarctic ice sheet was ungrounded. 7) In the Southwest Atlantic, AABW velocity waned during the latest Miocene. During the late Gilbert Chron a major and permanent change occurred in the pattern of ice-rafting to the South Atlantic, and after 4.35 Ma the increased IRD accumulation rate and frequency of major episodes of IRD accumulation suggest increased stability of the West Antarctic ice sheet. In addition, radiolarian faunas of Hole 514 record at least eight migrations of the Polar Front to the north of the site during the past 4.07 m.y. An apparent increase in the frequency of Polar Front migrations occurred about 2.7-2.6 Ma, possibly in response to oceanic change induced by fluctuations in glacial conditions of the Northern Hemisphere.