14 resultados para Tiger Stadium (Detroit, Mich.)
em Publishing Network for Geoscientific
Resumo:
Calcareous nannofossils were studied in sedimentary successions recovered from two holes on the Detroit Seamount in the northwestern Pacific Ocean. Preservation of calcareous nannoflora assemblages varies from poor to good throughout the sediments recovered from both Holes 1203A and 1204A. Biostratigraphic investigation allowed the identification of 19 nannofossil zones in Hole 1203A and 7 in Hole 1204A. The sedimentary cover in Hole 1203A ranges from lower Eocene (Zone NP12) to upper Miocene (Zone NN9). The sedimentary interval investigated directly overlying the basalt recovered at Hole 1204A is late Campanian in age (Zones CC22-CC23), and the top of the section is middle Eocene (Zone NP15) in age. Major unconformities were observed in Hole 1204A between upper Campanian (Zones CC22-CC23) and lower Thanetian (Zone NP7) sediments and between upper Thanetian (Zone NP8) and upper Ypresian (Zone NP12) sediments.
Resumo:
Subduction related mafic/ultramafic complexes marking the suture between the Wilson Terrane and the Bowers Terrane in northern Victoria Land (Antarctica) are well-suited for evaluating the magmatic and structural evolu- tion at the Palaeo-Pacific continental margin of Gondwana. One of these intru- sions is the "Tiger Gabbro Complex" (TGC), which is located at the southern end of the island-arc type Bowers Terrane. The TGC is an early Palaeozoic island-arc related layered igneous complex characterized by extraordinarly fresh sequences of ultramafic, mafic and evolved lithologies and extensive development of high-temperature high-strain zones. The goal of the present study is to establish the kinematic, petrogenetic and temporal development of the TGC in order to evaluate the magmatic and structural evolution of the deep crustal roots of this Cambrian-aged island-arc. Fieldwork during GANOVEX X was carried out to provide insight into: (i) the spatial relations between the different igneous lithologies of the TGC, (ii) the nature of the contact between the TGC and Bowers Terrane, and (iii) the high-temperature shear zones exposed in parts of the TGC. Here, we report the results of detailed field and petrological observations combined with new geochronological data. Based on these new data, we tentatively propose a petrogenetic-kinematic model for the TGC, which involves a two-phase evolution during the Ross orogeny. These phases can be summarized as: (i) an early phase (maximum age c. 530 Ma) involving tectono-magmatic processes that were active at the deep crustal level represented by the TGC within the Bowers island arc and within a general NE-SW directed contractional regime and (ii) a late phase (maximum age c. 490 Ma) attributed to the late Ross orogenic intrusion of the TGC into the higher-crustal metasedimentary country rocks of the Bowers Terrane under NE-SW directed horizontal maximum stress and subsequent cooling.
Resumo:
Paleomagnetic data were measured from basaltic flows cored by the Ocean Drilling Program (ODP) at Site 883 on the summit of Detroit Seamount, located in the northernmost Emperor seamounts. These data are important because they reflect the paleolatitude of Hawaiian volcanism for the Late Cretaceous and bear upon geodynamic models of hotspot drift. A total of 143 samples were measured, from cores acquired at two ~20-30 m apart. Most samples gave apparently reliable magnetic directions that were analyzed in a tiered fashion to compute a composite inclination vs. depth curve. One hole gave 13 distinct inclination groups, the other 10, and the two were combined into nine groups thought to represent independent measurements of paleofield direction. These data indicate normal magnetic polarity and give a mean inclination of 61.5+10.6°/-6.4° and paleolatitude of 42.8+13.2°/-7.6° (95% confidence limits). This paleolatitude is 6.2° higher than results from another ODP site (884) drilled on the lower flank of the same seamount. The difference is thought to result partly from an age difference (1-3 Myr) and partly from incomplete averaging of paleosecular variation at both drill sites. Together, the data from the two sites reinforce the conclusion that the northern Emperor seamounts were formed far north of the present-day hotspot latitude (~19.5°N) and suggest prior estimates of the amount and rate of southward drift may have been low. This analysis also illustrates uncertainties in determining paleolatitude from a small number of lava flow units from a single drill site.