236 resultados para Tie-lines

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ~1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ~4.5 m and ~7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between d18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ~37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ~1.53 and 1.66 Ma, corresponding to the first ~130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ~80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ~37-38 Site 1123 tephra units (~20%) can be found in all three cores, and 22 tephra units (~60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic polarity stratigraphy at Site 907 obtained from the shipboard pass-through magnetometer and from discrete samples is readily interpretable back to the onset of the Gilbert Chron (5.89 Ma). From this level to the base of the section at ~14 Ma, the interpretation is corroborated by silicoflagellate datums with predictable correlation to polarity chrons. The resulting magnetostratigraphic interpretation differs from those proposed in the Leg 151 (Hole 907A) and 162 (Holes 907B and 907C) Initial Reports volumes. An important hiatus in the 7-10 Ma interval at Site 907 caused sedimentation to slow or cease for ~2.7 m.y. We have revised the shipboard correlation among the three holes at Site 907, resulting in a new composite section splice and recalculation of composite depths. For Site 985, magnetostratigraphic interpretation is possible down to ~150 meters below seafloor (mbsf) (C3An/C3Ar) at ~6 Ma. There are no useful biostratigraphic datums from Site 985 to support this interpretation; however, the interpretation is supported by the correlation of Sites 985 and 907 using natural gamma data from the shipboard multisensor track. Below ~150 mbsf at Site 985, drilling-related deformation at the onset of extended core barrel drilling precluded magnetostratigraphic interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a "maximum-sized" ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a "minimum" model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.