3 resultados para Theories of conduct

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The classic paleotemperature record based on d18O data from pelagic foraminiferal calcite suggests that equatorial sea-surface temperatures during the Maastrichtian (~12-20°C) were much cooler than today (~27-29°C). Such cool equatorial temperatures contradict basic theories of tropical atmospheric and ocean dynamics. We report d18O data from remarkably well preserved rudist aragonite and magnesian calcite cements of Maastrichtian age (~69+/-1 Ma) from the carbonate platform of Wodejebato guyot in the western Pacific. These data suggest that equatorial sea-surface temperatures in the Maastrichtian (best estimate ~27-32°C) were at least as warm as today. This finding helps reconcile the geologic d18O record with ocean-atmospheric dynamic theory and implies a reduction in the poleward heat flux required by global climate simulations of greenhouse conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quantitative model of development of magmatic and ore-magmatic systems under crests of mid-ocean ridges is constructed. Correct physical models of melting zone formation in approximation to active spreading, non-stationary dynamics of magma intrusion from a center of generation, filling of magma chambers of various shapes, feeding of fissure-type volcanoes, and retrograde boiling of melts during solidification of intrusive bodies beneath axial zones of spreading in crests of ridges are proposed. Physicochemical and mathematical theories of disintegration of multi-component solutions, growth of liquational drops of ore melts, and sublimation of components from magmatic gases are elaborated. Methods for constructing physically correct models of heat and mass transfer in heterophase media are devised. Modeling of development of magmatic and ore-magmatic systems on the basis of the Usov-Kuznetsov facies method and the Pospelov system approach are advanced. For quantitative models numerical circuits are developed and numerical experiments are carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.