136 resultados para Theoretical model and wind action

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist-specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Canary Basin lies in a region of strong interaction between the atmospheric and ocean circulation systems: Trade winds drive seasonal coastal upwelling and dust storm outbreaks from the neighbouring Sahara desert are the major source of terrigenous sediment. To investigate the forcing mechanisms for dust input and wind strength in the North Canary Basin, the temporal pattern of variability of sedimentological and geochemical proxy records has been analysed in two sediment cores between latitudes 30°30'N and 31°40'N. Spectral analysis of the dust proxy records indicates that insolation changes related to eccentricity and precession are the main periods of temporal variation in the record. Si/Al and grain-size of the terrigenous fraction show an increase in glacial-interglacial transitions while Al concentration and Fe/Al ratio are both in phase with minima in the precessional index. Hence, the results obtained show that the wind strength was intensified at Terminations. At times of maxima of Northern Hemisphere seasonal insolation, when the African monsoon was enhanced, the North Canary Basin also received higher dust input. This result suggests that the moisture brought by the monsoon may have increased the availability of dust in the source region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100-65 Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these phenomena relate to deep-water circulation is unclear. We use a proxy for deep-water mass composition (neodymium isotopes; e-Nd) to show that, at North Atlantic ODP Site 1276, deep waters shifted in the early Campanian (~78-83 Ma) from e-Nd values of ~-7 to values of ~-9, consistent with a change in the style of deep-ocean circulation but >10 Myr after a change in bottom water oxygenation conditions. A similar, but more poorly dated, trend exists in e-Nd data from DSDP Site 386. The Campanian e-Nd transition observed in the North Atlantic records is also seen in the South Atlantic and proto-Indian Ocean, implying a widespread and synchronous change in deep-ocean circulation. Although a unique explanation does not exist for the change at present, we favor an interpretation that invokes Late Cretaceous climatic cooling as a driver for the formation of Southern Component Water, which flowed northward from the Southern Ocean and into the North Atlantic and proto-Indian Oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r >= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (>= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.