6 resultados para The material body

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A description is given of the taxa sorted out of the zooplanktion and mikronekton material of the 1st German Antarctic Expedition 1975/76 by the Kiel sorting center. The methods employed in the sorting center are describined in detail. Notes for further use of the material are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic (dD, d18O, d13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of dD and d18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (d18O, d13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the first section of the "Meteor" cruise No. 2 a profile was run from the Azores to the south across the flanks of the Mid-Atlantic Ridge with a chain of seamounts. The profile extended between the Cruiser (living) and the Hyeres seamounts, which, according to our soundings, form a connected massif, and across the centre of the Grosse Meteor Bank (30°N, 28.5 °W). These seamounts rise from a depth of more than 4000 m up till close to the surface of the sea forming there a large almost flat plateau. In the case of the Grosse Meteor Bank, this plateau has a N-S extension of approx. 30 nautical miles and an E-W extension of approx. 20 nautical miles and reaches a height of 275 m in water depth. The gravity measurements yielded a density of the topographic masses of 2.6 g/cm**3 for the Grosse Meteor Bank. Magnitude and shape of the measured free-air anomaly are very well shown in a model computation with this density. The theoretical gravity effects of the seismically detected swell of cristalline rock and of the Moho depression (mountain root) are not indicated by the observational data. It can, therefore, be assumed that the latter two neutralize each other. It seems, accordingly, that there is no local isostatic compensation of the topographic masses. Hence, the density of 2.6 g/cm**3 obtained would be about the true density of rock. In connection with the mean velocity of P waves (Aric et al., 1968) obtained by seismic refraction methods it must be concluded that the material of the 1200-4000 m thick surface layer of the Grosse Meteor Bank consists of consolidated sediments. This finding is supported by the total intensity of the Earth's magnetic field over the Grosse Meteor Bank. On the assumption of a homogeneous magnetization in the direction of the present Earth's field, the computed anomaly of the massif deviates considerably from the measured anomaly while the magnetic field of the seismically detected crystalline body is capable of interpreting the observed data. Deviating from the prevailing interpretation of the seamounts' plateau as a volcanic cone with submarine abrasion, the Grosse Meteor Bank and the seamounts in the vicinity are assumed to be of continental origin. The questions whether these seamounts submerged later on or whether the sealevel has risen subsequently are, therefore, largely nonexistent.