10 resultados para The Nest
em Publishing Network for Geoscientific
Resumo:
Notes from Henrik de Nie: The project started as a phenological study in cooperation with the (Dutch) meteorological institute (KNMI) to register the time of arrival of Fitis and Tjiftaf. During 1951 to 1969 he went every day to the wood (except 1966, in this year his wife died). Thereafter he went no more daily, but because he knew the wood very well and he was free to choice the day on which he did a survey, therefore he choose days with relatively good weather. He did not observe very common bird species, maybe because they are dependent on nest boxes and he did not want to be dependent on the management of the nest box-people (in fact I forgot precisely his arguments, and now I cannot ask him this): Common Starling; Eurasian Tree Sparrow (not common); Great Tit; Eurasian Blue Tit Pieter mentioned 14 species that scored many zero values or only one observation: Stock Dove; Common Cuckoo; Lesser Spotted Woodpecker; Eurasian Golden Oriole; Eurasian Nuthatch; Short-toed Treecreeper; Common Nightingale; Marsh Warbler; Lesser Whitethroat; Goldcrest; Common Firecrest (after 1970 he had difficulties in hearing these two species); Spotted Flycatcher; Eurasian Bullfinch; Black Woodpecker He also mentioned species that he found much fewer as: European Greenfinch; European Pied Flycatcher; Long-eared Owl; Red Crossbill; Sedge Warbler; Icterine Warbler; Eurasian Woodcock; Eurasian Siskin; European Green Woodpecker; Great Spotted Woodpecker; Eurasian Hobby; Western Barn Owl; Woodlark; Common Wood Pigeon; Little Owl; European Crested Tit; Hawfinch. But for these species I think that observations are strongly dependent on the number of visits to the wood. Also here, many zeros and few 1 x during the whole series of visits.
Resumo:
Behavioural field observations are increasingly being used in ecotoxicological research to identify potential adverse effects of exposure to persistent organic pollutants (POPs). We investigated thermal conditions inside the nest and parental behaviour of glaucous gulls, Larus hyperboreus, breeding in the Norwegian Arctic in relation to the concentrations of major classes of POPs (organochlorines, brominated flame retardants and metabolically derived products) accumulated in their blood. Most notably, nest temperature was negatively correlated with the concentrations of the sum of DDT, sum of PCB and several quantitatively minor POP classes within the incubating parent. To investigate the relationship between incubation ability and parental POP exposure further, we experimentally increased the costs of incubation by artificially increasing the clutch size from two to four eggs. Clutch enlargement was followed by a decrease in nest temperature, but this drop in temperature was not associated with POP concentrations within the incubating parent. However, males, which had higher POP concentrations and lower white blood cell counts than females, seemed less able to maintain nest temperature. There was virtually no evidence to suggest that the sum of PCB or DDT were associated with changes in the time a bird spent incubating. However, there was some indication that nest site attendance by nonincubating males was negatively related to the sum of DDT, suggesting that nest protection may have been compromised. The results suggest that adverse effects of parental POP exposure may occur through suboptimal thermal conditions for embryo development and possibly increased egg predation risk.
Resumo:
Knots arrive on Ellesmere Island in late May or early June. At Hazen Camp small flocks were present on 3 June 1966, but the main influx occurred 5 June when many flocks were seen ranging in size from 6 to 60 individuals. The sexes appeared to arrive together, but the manner of pair-formation was not determined. By 7 June pairs were distributed over the tundra with large feeding flocks forming at snowfree wet marshy areas. Most nests were on Dryas-hummocked slopes and tundra, either dry or moist, with some on clay plains and summits in a mixed Dryas and Salix vegetation. A census area of 240 ha supported at least 3 breeding pairs, and possibly 5; the total number of pairs breeding in the Hazen Camp study area was estimated to be about 25 (1.09 pairs/km**2). Egg-laying (4 nests) extended from 15 to 28 June, with 3 of the 4 sets completed between 20 and 23 June. Both sexes incubated, one of the pair more regularly than the other. The song-flight display of the male was performed most frequently during egglaying and incubation. The incubation period of the last egg in one clutch was established as being between 21.5 and 22.4 days. Four nests hatched between 12 and 20 July, and the hatching period of the entire clutch was less than 24 hours. Four of 7 nests (57 %) survived and egg survival (53 %) was low. Families left the nesting area so on after hatching, concentrating at ponds where food was readily available for the young. Both adults attended the young during the pre-fledging period, but the females apparently departed before the young had hedged. Males left once the young could fly and the adult fall migration was complete by early August. Most 01 the young departed belore mid-August. Fall migration is complete by late August or early September. The breeding season appears to be timed to peak load supply for the young. Adult Chironomidae emergence was highest between 3 and 17 July, the period during which most successful nests hatched. The increasing scarcity of adult insects for the young after mid-July was offset by family movements over the tundra and the early departure of half the adult population. Food also seemed to influence the distribution of breeding pairs aver the tundra, restricting them to the general vicinity of marshes, streams, and ponds where food is most available when the young hatch. Territoriality in the Knot appears to be closely associated with the protection of the nest against predators and has at least a local effect in regulating the number of breeding pairs. Plant material was important in the diet of adult Knots throughout the summer and the primary food from the time of arrival until mid-June. After mid-June the percentage of animal matter increased as dipterous insects became available (especially adult Chironomidae), but plant materials continued to constitute a large part of the diet, usually more than 50 %. The food of the young before fledging consisted principally of adult chironomids.
Resumo:
Snow cover has dramatic effects on the structure and functioning of Arctic ecosystems in winter. In the tundra, the subnivean space is the primary habitat of wintering small mammals and may be critical for their survival and reproduction. We have investigated the effects of snow cover and habitat features on the distributions of collared lemming (Dicrostonyx groenlandicus) and brown lemming (Lemmus trimucronatus) winter nests, as well as on their probabilities of reproduction and predation by stoats (Mustela erminea) and arctic foxes (Vulpes lagopus). We sampled 193 lemming winter nests and measured habitat features at all of these nests and at random sites at two spatial scales. We also monitored overwinter ground temperature at a subsample of nest and random sites. Our results demonstrate that nests were primarily located in areas with high micro-topography heterogeneity, steep slopes, deep snow cover providing thermal protection (reduced daily temperature fluctuations) and a high abundance of mosses. The probability of reproduction increased in collared lemming nests at low elevation and in brown lemming nests with high availability of some graminoid species. The probability of predation by stoats was density dependent and was higher in nests used by collared lemmings. Snow cover did not affect the probability of predation of lemming nests by stoats, but deep snow cover limited predation attempts by arctic foxes. We conclude that snow cover plays a key role in the spatial structure of wintering lemming populations and potentially in their population dynamics in the Arctic.
Resumo:
The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different i/S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between "younger" BSW and the Levantine origin water), and is still traceable in the water column in late summer.
Resumo:
The monograph summarizes results of studies of hydrothermal fields on the ocean floor, hydrothermal plumes and metalliferous sediments. Hydrothermal ore manifestations formed in different geodynamic settings, with different character of volcanism in different facial conditions of deposition are described. Causes of non-uniformity of hydrothermal system functioning in different parts of the ocean and therefore variability of hydrothermal deposits are under consideration. On the base of found relationships of these irregularities with geodynamics, volcanism and sedimentation a new classification of hydrothermal processes and genetic models of hydrothermal ore formation in the ocean have been created. Regularities of hydrothermal sedimentary material dispersion in bottom waters are discussed.
Resumo:
A representative collection of hydrothermal manifestations was sampled practically from all hydrothermal mounds of the Broken Spur hydrothermal vent field with use of the Mir manned submersibles during three cruises of R/V Akademik Mstislav Keldysh. Mineral associations characteristic for different morphological types of sulfide ores from hydrothermal pipes, plates, and diffusers are assessed. Particular attention is paid to distribution of minor elements and their distribution patterns determined by mineralogical zonation. Measured isotopic composition of sulfur in sulfide minerals varies from 0.4 to 5.2 per mil that indicates their similarity with ores from the Snake Pit vent field and is related to dilution of hot ore-bearing solutions by seawater and reduction of water sulfate ions to H2S with heavy isotopic composition.
Resumo:
Lemmings construct nests of grass and moss under the snow during winter, and counting these nests in spring is 1 method of obtaining an index of winter density and habitat use. We counted winter nests after snow melt on fixed grids on 5 areas scattered across the Canadian Arctic and compared these nest counts to population density estimated by mark-recapture on the same areas in spring and during the previous autumn. Collared lemmings were a common species in most areas, some sites had an abundance of brown lemmings, and only 2 sites had tundra voles. Winter nest counts were correlated with lemming densities estimated in the following spring (r(s) = 0.80, P < 0.001), but less well correlated with densities the previous autumn (r(s) = 0.55, P < 0.001). Winter nest counts can be used to predict spring lemming densities with a log-log regression that explains 64% of the observed variation. Winter nest counts are best treated as an approximate index and should not be used when precise, quantitative lemming density estimates are required. Nest counts also can be used to provide general information about habitat-use in winter, predation rates by weasels, and the extent of winter breeding.