13 resultados para The Army Technology Center

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studied by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45-74 wt%, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45-53 wt% SiO2) comprise the following varieties: potassic (on average 4.2 wt% K2O, 1.7 wt% Na2O, 1.0 wt% TiO2, and 0.20 wt% P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53-64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64-74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt%, 1.19 wt% on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt% (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol'shoi Semyachek, Dikii Greben', Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The powerful eruption in the Akademii Nauk caldera on January 2, 1996 marked a new activity phase of the Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were used to estimate composition of the parental melt and physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesium, high aluminum basalt (SiO2 = 50.2%, MgO = 5.6%, Al2O3 = 17%) of the mildly potassium type (K2O = 0.56%) and contained much dissolved volatile components (H2O = 2.8%, S = 0.17%, and Cl = 0.11%). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at pressure ~1.5 kbar, proceeded within a narrow temperature range of 1040+/-20°C, and continued until near-surface pressure ~100 bar was reached. Degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under pressure <1 kbar. Magma degassing in an open system resulted in escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. Release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated as 1.7x10**6 t H2O, 1.4x10**5 t S, and 1.5x10**4 t Cl. Concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.