27 resultados para Temperature tolerance
em Publishing Network for Geoscientific
Resumo:
Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.
Resumo:
Exposure to elevated seawater PCO2 limits the thermal tolerance of crustaceans but the underlying mechanisms have not been comprehensively explored. Larval stages of crustaceans are even more sensitive to environmental hypercapnia and possess narrower thermal windows than adults. In a mechanistic approach, we analysed the impact of high seawater CO2 on parameters at different levels of biological organization, from the molecular to the whole animal level. At the whole animal level we measured oxygen consumption, heart rate and activity during acute warming in zoea and megalopa larvae of the spider crab Hyas araneus exposed to different levels of seawater PCO2. Furthermore, the expression of genes responsible for acid-base regulation and mitochondrial energy metabolism, and cellular responses to thermal stress (e.g. the heat shock response) was analysed before and after larvae were heat shocked byrapidly raising the seawater temperature from 10°C rearing temperature to 20°C. Zoea larvae showed a high heat tolerance, which decreased at elevated seawater PCO2, while the already low heat tolerance of megalopa larvae was not limited further by hypercapnic exposure. There was a combined effect of elevated seawater CO2 and heat shock in zoea larvae causing elevated transcript levels of heat shock proteins. In all three larval stages, hypercapnic exposure elicited an up-regulation of genes involved in oxidative phosphorylation, which was, however, not accompanied by increased energetic demands. The combined effect of seawater CO2 and heat shock on the gene expression of heat shock proteins reflects the downward shift in thermal limits seen on the whole animal level and indicates an associated capacity to elicit passive thermal tolerance. The up-regulation of genes involved in oxidative phosphorylation might compensate for enzyme activities being lowered through bicarbonate inhibition and maintain larval standard metabolic rates at high seawater CO2 levels. The present study underlines the necessity to align transcriptomic data with physiological responses when addressing mechanisms affected by an interaction of elevated seawater PCO2 and temperature extremes.
Resumo:
Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.
Resumo:
We tested the hypothesis that development of the Antarctic urchin Sterechinus neumayeri under future ocean conditions of warming and acidification would incur physiological costs, reducing the tolerance of a secondary stressor. The aim of this study is twofold: (1) quantify current austral spring temperature and pH near sea urchin habitat at Cape Evans in McMurdo Sound, Antarctica and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) under ambient (-0.7 °C; 400 µatm pCO2) and future (+2.6 °C; 650 and 1,000 µatm pCO2) ocean conditions and expose four EDSs (blastula, gastrula, prism, and 4-arm echinopluteus) to a one hour acute heat stress and assess survivorship. Results of field data from 2011 to 2012 show extremely stable inter-annual pH conditions ranging from 7.99 to 8.08, suggesting that future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above their current habitat conditions. EDSs survived acute heat exposures >20 °C above habitat temperatures of -1.9 °C. No pCO2 effect was observed for EDSs reared at -0.7 °C. When reared at +2.6 °C, small but significant pCO2 effects were observed at the blastula and prism stage, suggesting that multiple stressors are more detrimental than single stressors. While surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant of future ocean conditions.
Resumo:
Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.
Resumo:
Daphnia was collected from five subarctic ponds which differed greatly in their DOC contents and, consequently, their underwater light (UV) climates. Irrespective of which Daphnia species was present, and contrary to expectations, the ponds with the lowest DOC concentrations (highest UV radiation levels) contained Daphnia with the highest eicosapentaenoic acid (EPA) concentrations. In addition, EPA concentrations in these Daphnia generally decreased in concert with seasonally increasing DOC concentrations. Daphnia from three of the ponds was also tested for its tolerance to solar ultraviolet radiation (UVR) with respect to survival. Daphnia pulex from the clear water pond showed, by far, the best UV-tolerance, followed by D. longispina from the moderately humic and D. longispina from the very humic pond. In addition, we measured sublethal parameters related to UV-damage such as the degree to which the gut of Daphnia appeared green (as a measure of their ability to digest algae), and whether their guts appeared damaged. We developed a simple, noninvasive scoring system to quantify the proportion of the gut in which digestive processes were presumably active. This method allowed repeated measurement of the same animals over the course of the experiment. We demonstrated, for the first time, that sublethal damage of the gut precedes mortality caused by exposure to UVR. In a parallel set of experiments we fed UV-exposed and non-exposed algae to UV-exposed and non-exposed daphnids. UVR pretreatment of algae enhanced the negative effects of exposure to natural solar UV-irradiation in Daphnia. These UV-related effects were generally not specific to the species of Daphnia.
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
A low capacity for regulation of extracellular Mg2+ has been proposed to exclude reptant marine decapod crustaceans from temperatures below 0°C and thus to exclude them from the high Antarctic. To test this hypothesis and to elaborate the underlying mechanisms in the most cold-tolerant reptant decapod family of the sub-Antarctic, the Lithodidae, thermal tolerance was determined in the crab Paralomis granulosa (Decapoda, Anomura, Lithodidae) using an acute stepwise temperature protocol (-1°, 1°, 4°, 7°, 10°, and 13°C). Arterial and venous oxygen partial pressures (Po2) in hemolymph, heartbeat and ventilation beat frequencies, and hemolymph cation composition were measured at rest and after a forced activity (righting) trial. Scopes for heartbeat and ventilation beat frequencies and intermittent heartbeat and scaphognathite beat rates at rest were evaluated. Hemolymph [Mg2+] was experimentally reduced from 30 mmol/L to a level naturally observed in Antarctic caridean shrimps (12 mmol/L) to investigate whether the animals remain more active and tolerant to cold (-1°, 1°, and 4°C). In natural seawater, righting speed was significantly slower at -1° and 13°C, compared with acclimation temperature (4°C). Arterial and venous hemolymph Po2 increased in response to cooling even though heartbeat and ventilation beat frequencies as well as scopes decreased. At rest, ionic composition of the hemolymph was not affected by temperature. Activity induced a significant increase in hemolymph [K+] at -1° and 1°C. Reduction of hemolymph [Mg2+] did not result in an increase in activity, an increase in heartbeat and ventilation beat frequencies, or a shift in thermal tolerance to lower temperatures. In conclusion, oxygen delivery in this cold-water crustacean was not acutely limiting cold tolerance, and animals may have been constrained more by their functional capacity and motility. In contrast to earlier findings in temperate and subpolar brachyuran crabs, these constraints remained insensitive to changing Mg2+ levels.