7 resultados para Tariff on bedding
em Publishing Network for Geoscientific
Resumo:
Paleomagnetic measurements of sediment samples provide the magnetostratigraphy at Deep Sea Drilling Sites 582, 583, and 584 in the Nankai Trough and the Japan Trench. Drastic changes in the rate of sediment accumulation are documented by the magnetostratigraphic and biostratigraphic correlations. The changes in the accumulation rate correspond to the supply of sediments and variations in the accretionary process, which are directly related to the tectonic cycles in the geologic evolution of the Japanese island arc. Faults and folds within the drilled sedimentary sequences are oriented by paleomagnetic declination. Their directions and stress patterns are related to the relative plate motion along the trough and trench. The original remanent magnetization of the sediment was modified and remagnetized in the tectonic process of accretion by physical deformation, faulting, and intrusion of dewatering veinlets.
Resumo:
Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.
Resumo:
Qualitative petrographic study of selected clastic horizons within the Eocene section of Hole 516F has revealed the presence of abundant fine-grained lithic fragments, probably volcanic, along with coarser fragments of quartz and feldspar apparently derived from a nearby plutonic terrain. In detail, poor sorting, presence of graded bedding, and an abundance of clay suggest these are turbidite horizons locally derived from a mixed volcanic/plutonic terrain, possibly with some direct contribution from contemporary volcanic ash falls. A progressive increase in plutonic versus volcanic components with time is, however, more consistent with an erosional origin for most of this material. Unusual euhedral dark biotite is abundant in several of the lower clastic horizons; it is most easily interpreted as microphenocrysts weathered in situ out of alkalic volcanic ash. Biotite separated from Sample 516F-76-4,107-115 cm, has been dated by the K-Ar method at about 46 Ma. Alkaline volcanoes active on the Rio Grande Rise in the middle Eocene would be the most probable source of this ash and would be consistent with other evidence for potassic, alkaline volcanism along the Rio Grande Rise and at the Tristan da Cunha hot spot.