4 resultados para TanDEM-X
em Publishing Network for Geoscientific
Resumo:
The dataset shows the ice thickness over Wilkins Ice Shelf, Antarctic Peninsula derived from TanDEM-X Interferometry. The data has been acquired between June and August 2012. The TanDEM-X heights have been linked to CryoSAT-2 heights (V. Helm) from the respective time stamp. Elevations have been transformed from WGS84 ellipsoidal heights to the EGM2008 geoid. The ice shelf thickness was estimated assuming hydrostatic equilibrium and a mean ice density of 915 kg/m³.
Resumo:
We have generated a new digital elevation model for entire King George Island, Antarctica, using summer TanDEM-X bistatic SAR satellite data. The data was processed using differential SAR interferometry with an older DEM as reference. 4 TanDEM-X scenes from January 2012 were used as input. The new DEM was referenced to and validated against DGPS measurements. Height values are given in reference to ellipsoid (WGS84).
Resumo:
In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESat's Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130,000 km**2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 +/- 10.1, 1.1 +/- 6.4, and 3.1 +/- 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.
Resumo:
The northern Antarctic Peninsula is one of the fastest changing regions on Earth. The disintegration of the Larsen-A Ice Shelf in 1995 caused tributary glaciers to adjust by speeding up, surface lowering, and overall increased ice-mass discharge. In this study, we investigate the temporal variation of these changes at the Dinsmoor-Bombardier-Edgeworth glacier system by analyzing dense time series from various spaceborne and airborne Earth observation missions. Precollapse ice shelf conditions and subsequent adjustments through 2014 were covered. Our results show a response of the glacier system some months after the breakup, reaching maximum surface velocities at the glacier front of up to 8.8 m/d in 1999 and a subsequent decrease to ~1.5 m/d in 2014. Using a dense time series of interferometrically derived TanDEM-X digital elevation models and photogrammetric data, an exponential function was fitted for the decrease in surface elevation. Elevation changes in areas below 1000 m a.s.l. amounted to at least 130±15 m130±15 m between 1995 and 2014, with change rates of ~3.15 m/a between 2003 and 2008. Current change rates (2010-2014) are in the range of 1.7 m/a. Mass imbalances were computed with different scenarios of boundary conditions. The most plausible results amount to -40.7±3.9 Gt-40.7±3.9 Gt. The contribution to sea level rise was estimated to be 18.8±1.8 Gt18.8±1.8 Gt, corresponding to a 0.052±0.005 mm0.052±0.005 mm sea level equivalent, for the period 1995-2014. Our analysis and scenario considerations revealed that major uncertainties still exist due to insufficiently accurate ice-thickness information. The second largest uncertainty in the computations was the glacier surface mass balance, which is still poorly known. Our time series analysis facilitates an improved comparison with GRACE data and as input to modeling of glacio-isostatic uplift in this region. The study contributed to a better understanding of how glacier systems adjust to ice shelf disintegration.